The First Farmers of Ukraine:
an Archaeobotanical Investigation and AMS
Dating of Wheat Grains from the Ratniv-2 Site
Giedrė Motuzaitė Matuzevičiūtė, Sergey Telizhenko

This paper presents the results of archaeobotanical investigations performed during excavations of a Linear Pottery Culture (LBK) site in western Ukraine. The collection of cultivated plants and weeds found in the hearth of the LBK dwelling fits well with what was grown by LBK inhabitants elsewhere in Europe. The direct dating of cereal grains reveals the existence of early-stage LBK in Ukraine during a much earlier timeframe than previously thought. The new archaeobotanical results and their dates exclude other previously postulated theories on the timing and geographical origins of agriculture in Ukraine, pointing towards the western LBK phenomenon as the earliest carrier of crop cultivation to Ukraine.

Keywords: Linear Pottery Culture (LBK), early cereal cultivation, spread of agriculture, the first farmers of Ukraine, Neolithic.

INTRODUCTION

The spread of agriculture across the eastern part of the European continent has been less intensively studied than that of the western one (Milisauskas, 1986; Whittle, 1996; Gronenborn, 2003; Dolukhanov et al., 2005), even though during prehistory, the eastern region constituted an important “crossroads” for interaction between Europe, the Caucasus and central Asia (Anthony, 2007; Rassamakin, 1999; Motuzaitė Matuzevičiute et al. 2009).

Different theories on the origins of agriculture in Ukraine have been previously proposed. Researchers cannot agree on the timing of the adoption of agriculture by the prehistoric populations of Ukraine, or even what the geographical origins of the cultivated crops actually are, because the understanding of the earliest appearance of agriculture in Ukraine has been constructed not on the direct radiocarbon dates of cereal crops, but on the secondary evidence such as the microscopic analysis of flint tools, the investigation of cereal impressions in pottery, along with palynological, zooarchaeological data or stable isotope analysis (e.g., Kotova, 2002, 2003; Kremenetski, 1999; Kuzminova et al., 1998; Kuzminova and Petrenko, 1989; Lillie and Budd, 2011; Lillie and Richards, 2000; Pashkevich, 1984, 1989, 1997, 2003, 2004, 2005, 2007; Yanushevich, 1976, 1978, 1980, 1984, 1986, 1989). One theory on the timing and the geographical origins of agriculture in Ukraine suggests that a variety of crop species, domesticated in China, such as buckwheat and millets (Panicum miliaceum and Setaria italica) arrived in Europe by possibly following the steppe corridor across the territory of Ukraine, possibly already during the Neolithic period (Janik, 2002; Jones, 2004; Hunt et al., 2008). While some proposed a theory that crop cultivation and the formation of domestic animal husbandries in Ukraine arrived from the Cauca-Caspian corridor (Bezusko et al., 2000; Kotova, 2003; Kotova, 2009; Kotova and Makhortykh, 2009).
The earliest Neolithic archaeological culture in Ukraine is considered the Bug-Dniester (Telegin et al., 2003) that formed under the influence of the first agricultural communities in the Balkans (Gaskevich, 2007; Kotova, 2003). Some groups of Balkan populations adopted farming around the second half of the 7th millennium BC (Colledge and Conolly, 2007; Bailey, 2000; Bailey, 2007; Pashkevich and Videiko, 2006; Whittle, 1996). These farming communities started spreading eastwards along river valleys into the Carpathian basin, and subsequently influenced the beginning of domestic cereal cultivation in Moldova (Dergachev et al., 1991; Dergachev and Dolukhanov, 2007; Kuzminova et al., 1998; Markevich, 1974; Monah, 2007). In Ukraine, however, the populations of the Bug-Dnieper culture followed hunter-fisher-forager subsistence strategies, and adopted only some domestic animal species from the populations of the Criş culture (Whittle, 1996; Zvelebil and Lillie, 2000). Telegin et al. (2003:458) have argued that the “securely attributed adoption of domesticates in the Bug-Dniester culture occurred in the later stages of its evolution” under the influence of LBK culture. In contrast, Pashkevich identified a few cereal impressions in pottery shards belonging to the Early Bug-Dniester culture sites situated along the Southern Bug River (Kotova, 2003; Pashkevich, 2003).

Previous research by Motuzaite-Matuzeviciute (2012) has shown that there is no substantial evidence to support the presence of early Bug-Dniester agriculture in Ukraine, concluding that the earliest agriculture did not come into play in Ukraine until ca 5000 BC with the LBK pottery culture, thus outlining the importance of direct dating of cereal remains from archaeological sites. The LBK culture arose from Körös, Starčevo, and Ćris cultures between 5500 to 5000 cal BC. (Bánffy, 2004; Bickle and Whittle, 2013) and it was believed that only in the second or third stages of its spread it reached the eastern regions of Europe and the territory of western Ukraine (Bickel and Whittle 2013; Okhrimenko and Lokaichuk, 2007; Okhrimenko, 2002).
In this paper, we present the archaeobotanical research results from the LBK Ratniv-2 site in western Ukraine and the radiocarbon dates of cereal grain that have been made from the Neolithic sites in Ukraine for the first time. Our research results suggest that LBK farmers were probably the first carriers of agriculture into Ukraine also showing that these processes took place during a much earlier timeframe than previously thought.
BACKGROUND ON RATNIV-2

The LBK settlements in Ukraine are situated mostly on the Volyn Plateau (Chernysh, 1962) and are almost all exclusively distributed on podzolized chernozem soils, shallow chernozems, and gray-forest podzols in the present forest-steppe region of Ukraine (Larina and Okhrimenko, 2007).

The Ratniv-2 site is located in western Ukraine, about 10 km southwest from Lutsk, next to the river Chornohuzka (Fig. 1). The Ratniv-2 site is situated on the forest-steppe environmental zone of Ukraine that stretches from the west to the northeast in a narrow belt distributed on loess parent material. The dominant soil types here are light to dark grey forest soils, podsolatedloessic and shallow chernozem or dark podzols (Platonova, 1989).

The Ratniv-2 site is distributed in a plowing field that contains finds of the Neolithic period that are scattered across a 520 × 240 m area. Small-scale excavations took place of a round shaped pit house about 4 × 5 m in size (object no. 17) with two fireplaces and four pits (Fig. 2). The house contained pottery vessels and a flint inventory of blade sickles that are characteristics of the LBK pottery style (Figs. 3, 4) (Telizhenko and Yanish, 2015). The pottery types consisted of spherical, conical and high bowls and pots that are found in neighboring Poland and attributed to LBK cultural evolution (e.g., Czekaj-Zastawny, 2008). A previous zooarchaeological analysis of Ratniv-2 osteological material has shown a typical to LBK animal species assemblage where the domesticated animal species show predominance over the wild one (Tringham, 1969). In the Ratniv-2 site, the dominating animal species were cattle (Bos taurus) followed by pig (Sus scrofa domestica) sheep (Ovis aries) and goat (Capra hircus) (Telizhenko and Yanish, 2015).

ARCHAEOBOTANICAL AND AMS DATING RESULTS

The archaeobotanical analysis of hearth/fireplace No. 1 within the pit house was conducted, a total 70 l of sediments were floated. The flotation was done during the fieldwork using a 0.3 mm size mesh, while archaeobotanical identification was conducted at the Bioarchaeology Center of Vilnius University, Lithuania.

The taphonomic conditions at the site strongly affected the preservation of the charred plant remains. Most of them are very fragmented, making it difficult to identify and ascribe to a species level. Nevertheless, the archaeobotanical analysis resulted in a range of cultivated crops accompanied by weeds. The dominant crops were hulled wheat species. From the grain shape and chaff (Fig. 5), it is clear that the archaeobotanical assemblage consists of at least two hulled-wheat types, includes einkorn (Triticum monococcum) (Fig. 6), emmer wheat (Triticum dicoccum) (Fig. 7) and probably the “new glume wheat type” (Triticum timopheevii) (Table 1). The former wheat species is extinct and no longer cultivated in the world. Among other cultivated plants, the seeds of flax (Linum usitatissimum/catharticum), hulled barley (Hordeum vulgare), lentil (Lens culinaris) and pea (Pisum sativum) were identified. Many caryopses parts of cereals were too fragmented, making it hard to confidently attribute them to species; therefore, the majority of grain fragments were classified as Triticum/Hordeum sp.

The weed species constituted of grass family plants, such as Bromus sp. and yellow millet (Setaria pumila), with knotweed (Polygonum sp.), medick/clover (Medicago/Trifolium) family plants. A few seeds of timothy-grass (Phleum pretense) were also identified. These are a few species of a typical assortment of weeds found in most of the LBK sites (Kreuz et al. 2005; Kreuz and Schäfer, 2011).

Two hulled wheat grains from fireplace No. 1 were selected for AMS 14C dating and submitted to the CHRONO Centre for Climate, the Environment, and Chronology, Queen’s University Belfast. The 14C age mean and standard deviation of the samples were calculated using the Libby half-life (5568 yr), following the conventions of Stuiver and Polach (1977). Calibration of the 14C dates was undertaken using the IntCal013 calibration curve (Reimer et al., 2013). All calibrated 14C ages are given at ± 95.4%, i.e. ± 2σ probability (OxCal 4.2).

Radiocarbon dates received from two single wheat grains resulted in a radiocarbon age of 5471–5230 cal BC at 95.4 % (6366 ± 41 BP) [UBA-30429] and
Some examples of the Linear Pottery Culture pottery vessels found in the pit house; the image scaling bar divisions are 1 mm. Drawing by S. Telishenko.

Fig. 3. Some examples of the Linear Pottery Culture pottery vessels found in the pit house; the image scaling bar divisions are 1 mm. Drawing by S. Telishenko.

3 pav. Keli linijinės juostinės keramikos puodų pavyzdžiai, surasti igilintos konstrukcijos pastate. Skalė nuotraukoje yra 1 mm ilgio. S. Telishenko piešinys
5341–5215 cal BC at 95.4 % (6299 ± 33 BP) [UBA-27678] (Table 2). The two radiocarbon dates represent the earliest evidence of domestic crop species in Ukraine.

DISCUSSION

Previous research that reported the presence of charred cereal macrofossils at the LBK sites of Ukraine are coming from the Nezvisko settlement. These include charred wheat (Triticum dicoccum, Triticum aestivum, Triticum durum) and peas (Pisum sativum/arvense) (Chernysh, 1962; Passek and Chernysh, 1970). The charred grains were found in two pottery vessels placed in a human burial (Passek and Chernysh, 1970). Besides these two vessels containing cereal grains, a grinding stone, stone mattocks, 16 additional ceramic vessels, flint, and bone tools were also placed in the burial (ibid.). There are no radiocarbon dates from the Nezvisko site, but judging from flint and pottery typology, it was previously attributed to the last stage of LBk phenomenon stretching to the 5th millennium BC.

The only charred cereal grain assemblage reported from Moldova is coming from the Criş culture site of Sakarova-1 (Kuzminova et al., 1998), and the LBK culture sites of Floresht-1 and Denchen-1, dated to the middle/second half of the 6th millennium BC (Kuzminova et al., 1998; Larina, 1994; Larina, 1999; Yanushevich, 1989; Quitta and Kohl, 1969). Unfortunately, none of the dates of these archaeobotanical records were obtained from direct dating of charred cereal grains either. Due to the lack of radiocarbon dates or dating inaccuracies of the LBK material at the Kiev’s radiocarbon conventional laboratory (Motuzaitė Matuzevičiūtė, 2013), previous researchers could not agree on the timing of the LBK phenomenon in Ukraine (e.g., Kotova, 2003; Chernysh, 1962; Dolukhanov, 2008).

The dating results received from Ratniv-2 site are in line with a chronology of the LBK culture in both Moldova and Poland (e.g., Kirkovski, 1990; Kukawka et al. 1990; Milisauskas, 1973), showing the rapid spread of the LBK population across Europe reaching as far east as Ukraine by already 5471–5230 cal BC. This timeframe link the western territory of Ukraine with the eastwards spread of the LBK farming phenomenon in its earliest stage. The research results at the Ratniv-2 site are also in agreement with the predominant current synthesis of scientific evidence and some aspects of the material culture in Ukraine that points towards the appearance of the earliest cereal cultivation and its subsequent expansion in Ukraine only with the expansion of LBK farmers into the re-
Fig. 4. Some examples of the Linear Pottery Culture vessel found in the pit house; the image scaling bar divisions are 1 mm. Drawing by S. Telizhenko.

4 pav. Keli linijinės juostinės keramikos puodų pavyzdžiai, surasti įgilintos konstrukcijos pastate. Skalė nuotraukoje yra 1 mm ilgio. S. Telishenko piešinys
The First Farmers of Ukraine: an Archaeobotanical Investigation and AMS Dating...

gion (cf., Anthony, 1995, Chernysh, 1962; Dolukhanov, 2008; Dolukhanov and Shilik, 2007; Zvelebil, 1989; Zvelebil and Dolukhanov, 1991; Zvelebil and Lillic, 2000). During the period of gradual LBK expansion, some changes are recognizable in the Bug-Dniester societies, such as population increase, intensification of cattle breeding, the appearance of soil cultivation and cereal processing tools, LBK pottery imports at Bug-Dniester sites etc. (e.g., Tovkailo 2005, Danilenko 1969). The familiarity of the local Late Bug-Dniester population with agriculture probably contributed to the subsequent farmer expansion from the Balkans-Lower Danube regions into the territory of Ukraine, forming the Tripolye culture. Tripolye

Fig. 5. The glume bases of hulled wheats from the Ratniv-2 house, fireplace 1. Photo by S. Telishenko.

Fig. 6. The dorsal, ventral, and lateral views of *Triticum monococcum* wheat grain from the Ratniv-2 site. Photo by S. Telishenko.

Fig. 7. The dorsal, ventral, and lateral views of *Triticum dicoccum* wheat grain from the Ratniv-2 site. Photo by S. Telishenko.
Farmer groups later spread all the way to the Dnieper River, following the forest-steppe belt of Ukraine, during the second half of the 5th millennium BC.

CONCLUSION

The archaeobotanical investigation and the direct radiocarbon dates of two wheat grains from the Ratniv-2 site represent at this stage the earliest dates derived from cereal grain from all the territory of Ukraine. The crops were consisting of hulled wheat grains and chaff, including einkorn (*Triticum monococcum*), emmer wheat (*Triticum dicoccum*) and probably the “new glume type wheat” (*Triticum timopheevii*). Among other cultivated plants, the seeds of flax (*Linum usitatissimum/catharticum*), hulled barley (*Hordeum vulgare*), lentil (*Lens culinaris*) and pea (*Pisum sativum*) were identified. The cereal grain were recovered from the house that contained pottery and flint inventory.

LITERATURE


Pashkevich G.A. 1984. Palaeoethnobotanical examination of archaeological sites in the Lower Dnieper region, dated to the last centuries BC and the first centuries AD.


Zvelebil M. 1989. On the transition to farming in Europe, or what was spreading with the Neolithic: a reply to Ammerman. Antiquity, 63, p. 379–383.


Янушевич З.В. 1980. Земледелие в раннем Триполье. Первобытная археология. Поиски и находки. Киев, с. 223–228.

Šiame straipsnyje pristatomi linijinės juostinės keramikos kultūros Ratniv-2 gyvenvietės, esančios vakarinėje Ukrainos dalyje, naujiausių archeobotaninių tyrimų duomenys. Archeobotaniniai duomenys atspindi šios kultūros gyventojams būdingą augintų kultūrinių augalų spektrą, kurį sudarė kelios kietųjų kviečių rūšys, miežiai, žirniai, lešiai ir linai. Keli kviečių grūdai buvo datuoti radioaktyviosios anglies metodu. Radioaktyviosios anglies datos iš Ratniv-2 gyvenvietės parodė, kad linijinės juostinės keramikos kultūros gyventojai išplėtojo po Centrinę bei Rytų Europą gerokai greičiau ir pasiekė Ukrainą jau pirmajame etape – 6 tūkstm. pr. m. e. viduraje. Tyrimai, pristatyti šiame straipsnyje, yra svarbių ir todėl, kad padeda eliminuoti kitas ankstesnes teorijas apie žemdirbystę pradžią Ukrainoje, kurios buvo siejamos su šiaurinio Kaukazo, stepių keliais ar su Bugo-Dniestro kultūros gyventojais, atnešusiais ankstyviusius kultūrinius augalus į Ukrainos teritoriją.