User Knowledge Based on Big Data Analytics
Articles
Justas Gribovskis
Vilnius University
Published 2018-12-28
https://doi.org/10.15388/Im.2018.82.10
PDF

Keywords

knowledge
new knowledge
knowledge management
big data
user knowledge
knowledge for the user
knowledge about the user
forecasting methods

How to Cite

Gribovskis, J. (2018) “User Knowledge Based on Big Data Analytics”, Informacijos mokslai, 82, pp. 161-179. doi: 10.15388/Im.2018.82.10.

Abstract

[full article and abstract in Lithuanian; abstract in English]

This article discusses the issues related to the interaction between big data and the new knowledge. A great deal of attention is paid to the development of new knowledge from big data analytics. The research scope of this article encompasses the largest telecommunications companies in Lithuania, which collect, process and adapt large amounts of data in their business environment. This new knowledge is related to the user and derives from the big data analysis, and it plays a very important role in today’s competitive environment. The study reveals that companies collect and process big data in order to get to know their customers (users) as much as possible. Today’s marketing would be impossible without big data analytics and the new knowledge gained from it.

PDF

References

BI, Zhuming; COCHRAN, David (2014). Big data analytics with applications. Journal of Management Analytics, vol. 1(4), p. 249–265 [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. sausio 24 d.].
BOLEA, Uroš; POPOVI, Aleš; ZABKARC, Jure et al. (2015). A case analysis of embryonic data mining success. Ljubljana: Stefan Institute, Department of Computer Systems, University of Ljubljana [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. sausio 30 d.].
CARTER, Phillip (2011). Big data analytics: Future architectures, skills and roadmaps for the CIO, IDC Whitepaper [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. sausio 30 d.].
CHAN, Joseph O. (2016). Big data custo mer knowledge management. Chicago Roosevelt University [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. vasario 9 d.].
CHEN, Philip; ZHANG, Chun-Yang (2014). Data-intensive applications, challenges, techniques and technologies: a survey on big data. Macau: Department of Computer and Information Science, Faculty of Science and Technology, University of Macau [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. vasario 14 d.].
CHU, Wesley (2014). Data mining and knowledge discovery for big data. Berlin: Springer-Verlag Berlin Heidelberg.
COURTNEY, Maertin (2012). Puzzling out big data. Journal of Engineering and Technology, vol. 7(12), p. 56–60.
DAVENPORT, Thomas (2014). Big data at work dispelling the myths, uncovering the opportunities. Harvard Business Review [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. vasario 7 d.].
Didieji duomenys: galimybės ir pavojai (2016). Europarlamentas [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. sausio 14 d.].
ELGENDY, Nada; ELRAGAL, Ahmed (2014). Big data analytics: a literature review paper. In P. Perner. Advances in data mining. Applications and theoretical aspects, p. 214–227. [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. vasario 12 d.].
European big data value strategic research & innovation (2015). Big Data Value Association [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. sausio 12 d.].
Eurostat. [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. vasario 9 d.].
FREDRIKSSON, Cecilia (2015). Knowledge management with big data creating new possibilities for organizations. Gothenburg: Department of Political Science, Public Administration Åbo Akademi University [interaktyvus]. Prieiga per internetą: at> [žiūrėta 2017 m. vasario 5 d.].
GEBERT, Henning; GEIB, Malte; KOLBE, Lutz; BRENNER, Walter (2003). Innovation: big data: the next frontier for innovation. Knowledge-enabled customer relationship management: integrating customer relationship management and knowledge management concepts. Journal of Knowledge Management, No. 7(5), p. 107–123.
HICKEY, Kathleen (2016). When big data doesn’t equal big knowledge [interaktyvus]. Prieiga per internetą: [žiūrėta 2016 m. gruodžio 14 d.].
HISLOP, Donald (2009). Knowledge management in organizations: a critical introduction paperback. Oxford: Oxford University Press.
.
.
JUCEVIČIENĖ, Palmira; ŠAJEVA, Svetlana (2012). Žinių valdymas. Kaunas: Technologija.
MAYER-SCHÖNBERGER, Viktor; CUKIER, Kenneh (2014). Big data: a revolution that will transform how we live, work, and think. London: John Murray.
MANYIKA, James; CHUI, Michael; BROWN, Brad; BUGHIN, Jacques; DOBBS, Richard; ROXBURGH, Charles; HUNG BYERS, Angelina (2011). Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute: McKinsey and Company [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. vasario 5 d.].
MCAFEE, Andrew; BRYNJOLFSSON, Erik (2012). Big data: the management revolution. Harvard Business Review [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. vasario 3 d.].
OGIELA, Lidia (2015). Advanced techniques for knowledge management and access to strategic information. Krakow: AGH University of Science and Technology [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. sausio 24 d.].
PAULEEN, David; CHUNG, William (2016). Does big data mean big knowledge? KM perspectives on big data and analytics [interaktyvus]. Prieiga per internetą: [žiūrėta 2016 m. gruodžio 24 d.].
RRT ataskaitos (2016). [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. vasario 7 d.].
SAGIROGLU, Seref; SINANC, Duygu (2013). Big data review: collaboration technologies and systems [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. sausio 19 d.].
SCHROECK, Michael; SHOCKLEY, Rebecca; SMART, Janet; ROMERO-MORALES, Dolores; TUFANO, Peter (2012). Analytics: the real-world use of big data. How innovative enterprises extract value from uncertain data. IBM Institute for Business Value [interaktyvus]. Prieiga per internetą: [žiūrėta 2017 m. sausio 21 d.].
SNIJDERS, Chris; MATZAT, Uwe; REIPS, Ulf-Dietrich (2012). Big data: big gaps of knowledge in the field of internet science [interaktyvus]. Prieiga per internetą: [žiūrėta 2016 m. gruodžio 29 d.].
WANG, Xiaojun; WHITE, Leroy; CHEN, Xu (2015). Big data research for the knowledge economy: past, present, and future. Industrial Management & Data Systems, vol. 115, iss. 9 [interaktyvus]. Prieiga per internetą: [žiūrėta 2016 m. gruodžio 22 d.].
WALKER, Saihnt (2014). Big data: a revolution that will transform how we live, work, and think. International Journal of Advertising, vol. 33, iss. 1 [interaktyvus]. Prieiga per internetą: [žiūrėta 2016 m. gruodžio 22 d.].
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Please read the Copyright Notice in Journal Policy