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Abstract. In this paper, the generalized Kudryashov method is presented to seek exact solutions
of the Eckhaus equation. From these solutions we can derive solitary wave solutions as a special
case. The proposed method is direct, effective and convenient and can be applied to many nonlinear
evolution equations in mathematical physics.
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1 Introduction

It is well known that nonlinear evolution equations (NLEEs) are widely used to describe
physical phenomena in various scientific and engineering fields, such as fluid mechanics,
plasma physics, optical fibers, biology, solid state physics, etc. [1–7, 10, 12–15, 20, 21,
23–29, 31–36]. In order to understand the mechanisms of those physical phenomena, it is
necessary to explore their solutions and properties. Solutions for the NLEEs can not only
describe the designated problems, but also give more insights on the physical aspects
of the problems in the related fields. In recent years, various powerful methods have
been presented for finding exact solutions of the NLEEs in mathematical physics, such as
tanh-function method [28], extended tanh-function method [10,29], sine-cosine method
[27], Jacobi elliptic function method [13, 32], F -expansion method [1, 31], exp-function
method [14], (G′/G)-expansion method [26], Q-function method [20] and so on.

The Q-function method, which is a direct and effective algebraic method for comput-
ing exact travelling wave solutions, was first proposed by Kudryashov [16]. The Q-func-
tion method that is known as the Kudryashov method is one of the most effective methods
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for finding the exact solution of high order NLEEs [17]. The most complete description of
this method was given in [19]. The successful application of this method to NLEEs was
performed in works [8,18,22]. In the present work, we apply the generalized Kudryashov
method [8] to the Eckhaus equation, which has the following form:

iψt + ψxx + 2
(
|ψ|2

)
x
ψ + |ψ|4ψ = 0,

where ψ = ψ(x, t), ψ : R2 → C is a complex-valued function of two real variables x, t.
This equation is a nonlinear Schrödinger-type equation (NLSE) that can be linearized to
the free linear Schrödinger equation, which was found in [9] as an asymptotic multiscale
reduction of certain classes of nonlinear partial differential equations. In [11], many of the
properties of the Eckhaus equation were investigated, including the linearization, soliton
solutions etc.

This NLSE is another nonlinear evolution equation that is available in the literature.
In fact, this is a dissipative equation. Therefore, this is not studied in the context of fiber
optics. The first term is the linear evolution term, while the second term is accounted for
dispersion that is commonly referred to as group velocity dispersion (GVD). The third
term is a dissipative terms that is responsible for the damping of the soliton solution.
Finally, the last term is the nonlinear term.

2 The generalized Kudryashov method

Suppose that we have a nonlinear evolution equation in the form

F (u, ut, ux, uxx, uxt, . . . ) = 0, (1)

where u = u(x, t) is an unknown function, F is a polynomial in u and its various partial
derivatives ut, ux with respect to t, x respectively, in which the highest order derivatives
and nonlinear terms are involved.

Step 1. Using the traveling wave transformation

u(x, t) = u(ξ), ξ = k(x− ct) + ξ0, (2)

where ξ0 is an arbitrary constant and k, c are constant to be determined later. Then Eq. (1)
is reduced to a nonlinear ordinary differential equation (NODE) of the form

P (u, uξ, uξξ, . . . ) = 0. (3)

Step 2. Suppose that the solution of Eq. (3) has the following form:

u(ξ) =

∑N
i=0 aiQ

i(ξ)∑M
j=0 bjQ

j(ξ)
=
A(Q(ξ))

B(Q(ξ))
, (4)

where ai (i = 0, 1, . . . , N ) and bj (j = 0, 1, . . . ,M ) are constants to be determined such
that aN 6= 0, bM 6= 0 and

Q(ξ) =
1

1 + κeξ
(5)
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is the solution of the equation
Qξ = Q2 −Q, (6)

where κ is an arbitrary constant.

Step 3. Determine the positive integer numbers N and M in Eq. (4) by using the homo-
geneous balance between the highest order derivatives and the nonlinear terms in Eq. (3)
after substituting Eq. (6) and the necessary derivatives of u, which have the form

uξ =
(
Q2 −Q

)(A′B −AB′
B2

)
, (7)

uξξ =
(Q2 −Q)2

B3

{
B(BA′′ −AB′′)− 2B′(A′B −AB′)

}
+ (2Q− 1)

(
Q2 −Q

)(A′B −AB′
B2

)
, (8)

where the prime ′ denotes the derivative d/dQ.

Step 4. Substitute Eqs. (4), (7) and (8) into Eq. (3). As a result of this substitution,
we get a polynomial of Q. In this polynomial we gather all terms of same powers and
equating them to be zero, we obtain a system of algebraic equations, which can be solved
by the Maple or Mathematica to get the unknown parameters ai (i = 0, 1, . . . , N ), bj
(j = 0, 1, . . . ,M ), k, c. Consequently, we obtain the exact solutions of Eq. (1).

3 The Eckhaus equation

The Eckhaus equation is a nonlinear Schrödinger-type equation, which can be written as

iψt + ψxx + 2
(
|ψ|2

)
x
ψ + |ψ|4ψ = 0. (9)

This equation has been solved by using the (G′/G)-expansion method [30]. Let us now
solve Eq. (9) by using the generalized Kudryashov method. To this end, we use the
following wave transformation:

ψ(x, t) = u(ξ)ei(αx+βt), ξ = k(x− 2αt) + ξ0, (10)

where k, α, β are constants to be determined later and ξ0 is an arbitrary constant. Now
Eq. (9) is reduced to the following NODE:

k2uξξ −
(
β + α2

)
u+ 4kuξu

2 + u5 = 0. (11)

Suppose that
u = v1/2. (12)

Then Eq. (11) can be reduced to the following NODE:

2k2vvξξ − k2v2ξ − 4
(
β + α2

)
v2 + 8kv2vξ + 4v4 = 0. (13)
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Balancing vvξξ with v4 in Eq. (13), we get the formulaN =M+1. If we chooseM = 1
and N = 2, then

v =
A(Q)

B(Q)
=
a0 + a1Q+ a2Q

2

b0 + b1Q
. (14)

Substituting v and it’s their necessary derivatives into (13) and equating all the coefficients
of Q to zero, we obtain

3a22b
2
1k

2 + 8a32b1k + 4a42 = 0, (15)

−4a22b21k2 + 8a22b0b1k
2 + 4a1a2b

2
1k

2 + 16a32b0k − 8a32b1k + 16a1a
2
2b1k

+ 16a1a
3
2 = 0, (16)

−4α2a22b
2
1 − 4a22βb

2
1 + 8a22b

2
0k

2 + a22b
2
1k

2 − 10a22b0b1k
2 + 6a0a2b

2
1k

2

− 6a1a2b
2
1k

2 + 10a1a2b0b1k
2 − 16a32b0k + 40a1a

2
2b0k + 8a0a

2
2b1k

− 16a1a
2
2b1k + 8a21a2b1k + 16a0a

3
2 + 24a21a

2
2 = 0, (17)

− 8α2a2a1b
2
1 − 8α2a22b0b1 − 8a2a1βb

2
1 − 8a22βb0b1 + 12a2a1b

2
0k

2

+ 2a2a1b
2
1k

2 − 12a2a1b0b1k
2 − 12a22b

2
0k

2 − 12a0a2b
2
1k

2 + 2a22b0b1k
2

+ 12a0a2b0b1k
2 + 32a2a

2
1b0k − 8a2a

2
1b1k − 40a22a1b0k + 32a0a

2
2b0k

− 8a0a
2
2b1k + 16a2a

3
1 + 48a0a

2
2a1 = 0, (18)

− 4α2a21b
2
1 − 16α2a2a1b0b1 − 4α2a22b

2
0 − 8α2a0a2b

2
1 − 4a21βb

2
1 − 16a2a1βb0b1

− 4a22βb
2
0 − 8a0a2βb

2
1 + 3a21b

2
0k

2 + 2a21b0b1k
2 − 18a2a1b

2
0k

2 − 2a0a1b
2
1k

2

− 2a0a1b0b1k
2 + 2a2a1b0b1k

2 + 4a22b
2
0k

2 + 12a0a2b
2
0k

2 − a20b21k2 + 6a0a2b
2
1k

2

− 20a0a2b0b1k
2 + 8a31b0k − 32a2a

2
1b0k − 8a0a

2
1b1k + 48a0a2a1b0k

− 32a0a
2
2b0k − 8a20a2b1k + 4a41 + 48a0a2a

2
1 + 24a20a

2
2 = 0, (19)

−8α2a21b0b1 − 8α2a2a1b
2
0 − 8α2a0a1b

2
1 − 16α2a0a2b0b1 − 8a21βb0b1

− 8a2a1βb
2
0 − 8a0a1βb

2
1 − 16a0a2βb0b1 − 4a21b

2
0k

2 − 2a21b0b1k
2 + 4a0a1b

2
0k

2

+ 6a2a1b
2
0k

2 + 2a0a1b
2
1k

2 + 4a0a1b0b1k
2 − 20a0a2b

2
0k

2 − 4a20b0b1k
2

+ 8a0a2b0b1k
2 − 8a31b0k + 16a0a

2
1b0k + 8a0a

2
1b1k − 48a0a2a1b0k

− 16a20a1b1k + 16a20a2b0k + 8a20a2b1k + 16a0a
3
1 + 48a20a2a1 = 0, (20)

−4α2a20b
2
1 − 8α2a2a0b

2
0 − 16α2a1a0b0b1 − 4α2a21b

2
0 − 4a20βb

2
1 − 8a2a0βb

2
0

− 16a1a0βb0b1 − 4a21βb
2
0 + a20b

2
1k

2 + 6a20b0b1k
2 − 6a1a0b

2
0k

2 + 8a2a0b
2
0k

2

− 2a1a0b0b1k
2 + a21b

2
0k

2 − 8a30b1k + 8a1a
2
0b0k − 16a2a

2
0b0k + 16a1a

2
0b1k

− 16a21a0b0k + 16a2a
3
0 + 24a21a

2
0 = 0, (21)

−8α2a20b0b1 − 8α2a1a0b
2
0 − 8a20βb0b1 − 8a1a0βb

2
0 − 2a20b0b1k

2 + 2a1a0b
2
0k

2

+ 8a30b1k − 8a1a
2
0b0k + 16a1a

3
0 = 0, (22)

−4α2a20b
2
0 − 4a20βb

2
0 + 4a40 = 0. (23)
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Solving system (15)–(23) with the aid of Mathematica, we obtain the following
results.

Result 1.
a0 = 0, a1 =

−kb0
2

, a2 =
−kb1
2

, k = ±2
√
β + α2. (24)

Substituting (24) into (14) with (5), (10) and (12), we obtain the following solutions of
Eq. (9):

ψ1,2(x, t) = ±
{√

β + α2
1

1 + κe±2
√
β+α2(x−2αt)+ξ0

}1/2

ei(αx+βt), (25)

ψ3,4(x, t) = ±i
{√

β + α2
1

1 + κe±2
√
β+α2(x−2αt)+ξ0

}1/2

ei(αx+βt). (26)

If we set κ = 1, we obtain

ψ(x, t) = ±
{√

β + α2

2

(
1− tanh

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

ei(αx+βt), (27)

ψ(x, t) = ±i
{√

β + α2

2

(
1− tanh

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

ei(αx+βt). (28)

If we set κ = −1 , we obtain

ψ(x, t) = ±
{√

β + α2

2

(
1− coth

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

ei(αx+βt), (29)

ψ(x, t) = ±i
{√

β + α2

2

(
1− coth

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

ei(αx+βt). (30)

Result 2.

a0 =
kb0
2
, a1 =

k

2
(b1 − b0), a2 =

−kb1
2

, k = ±2
√
β + α2. (31)

Substituting (31) into (14) with (5), (10) and (12), we obtain the following solutions
of Eq. (9):

ψ5,6(x, t) = ±
{√

β + α2

(
1− 1

1 + κe±2
√
β+α2(x−2αt)+ξ0

)}1/2

ei(αx+βt), (32)

ψ7,8(x, t) = ±i
{√

β + α2

(
1− 1

1 + κe±2
√
β+α2(x−2αt)+ξ0

)}1/2

ei(αx+βt). (33)

If we set κ = 1, we obtain

ψ(x, t) = ±
{√

β + α2

2

(
1 + tanh

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

ei(αx+βt), (34)

ψ(x, t) = ±i
{√

β + α2

2

(
1 + tanh

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

ei(αx+βt). (35)
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If we set κ = −1, we obtain

ψ(x, t) = ±
{√

β + α2

2

(
1 + coth

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

ei(αx+βt), (36)

ψ(x, t) = ±i
{√

β + α2

2

(
1 + coth

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

ei(αx+βt). (37)

Result 3.

a0 =
3kb0
4

, a1 = −2kb0, a2 = kb0, b1 = −2b0, k = ±2
√

2(β + α2)

5
. (38)

Substituting (38) into (14) with (5), (10) and (12), we obtain the following solutions of
Eq. (9):

ψ9,10(x, t) = ±
{
1

2

√
2(β + α2)

5

(
3− 2

1 + κe±2
√

2(β+α2)/5(x−2αt)+ξ0

)}1/2

× ei(αx+βt), (39)

ψ11,12(x, t) = ±i
{
1

2

√
2(β + α2)

5

(
3− 2

1 + κe±2
√

2(β+α2)/5(x−2αt)+ξ0

)}1/2

× ei(αx+βt). (40)

If we set κ = 1, we obtain

ψ(x, t) = ±
{
1

2

√
2(β + α2)

5

(
2 + tanh

(
±
√

2(β + α2)

5
(x− 2αt) + ξ0

))}1/2

× ei(αx+βt), (41)

ψ(x, t) = ±i
{
1

2

√
2(β + α2)

5

(
2 + tanh

(
±
√

2(β + α2)

5
(x− 2αt) + ξ0

))}1/2

ei(αx+βt). (42)

If we set κ = −1, we obtain

ψ(x, t) = ±
{
1

2

√
2(β + α2)

5

(
2 + coth

(
±
√

2(β + α2)

5
(x− 2αt) + ξ0

))}1/2

× ei(αx+βt), (43)

ψ(x, t) = ±i
{
1

2

√
2(β + α2)

5

(
2 + coth

(
±
√

2(β + α2)

5
(x− 2αt) + ξ0

))}1/2

× ei(αx+βt). (44)
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Result 4.

a0 = 0, a1 = 0, a2 = kb0, b1 = −2b0, k = ±
√
β + α2. (45)

Substituting (45) into (14) with (5), (10) and (12), we obtain the following solutions of
Eq. (9):

ψ13,14(x, t) = ±
{√

β + α2

(
(1 + κe±

√
β+α2(x−2αt)+ξ0)−2

1− 2(1 + κe±
√
β+α2(x−2αt)+ξ0)−1

)}1/2

× ei(αx+βt), (46)

ψ15,16(x, t) = ±i
{√

β + α2

(
(1 + κe±

√
β+α2(x−2αt)+ξ0)−2

1− 2(1 + κe±
√
β+α2(x−2αt)+ξ0)−1

)}1/2

× ei(αx+βt). (47)

If we set κ = ±1, we obtain

ψ(x, t) = ±
{√

β + α2

2

(
1 + coth

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

× ei(αx+βt), (48)

ψ(x, t) = ±i
{√

β + α2

2

(
1 + coth

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

× ei(αx+βt). (49)

Result 5.

a0 = kb0, a1 = −2kb0, a2 = kb0, b1 = −2b0, k = ±
√
β + α2. (50)

Substituting (50) into (14) with (5), (10) and (12), we obtain the following solutions of
Eq. (9):

ψ17,18(x, t) = ±
{√

β + α2

(
((1 + κe±

√
β+α2(x−2αt)+ξ0)−1 − 1)2

1− 2(1 + κe±
√
β+α2(x−2αt)+ξ0)−1

)}1/2

× ei(αx+βt), (51)

ψ19,20(x, t) = ±i
{√

β + α2

(
((1 + κe±

√
β+α2(x−2αt)+ξ0)−1 − 1)2

1− 2(1 + κe±
√
β+α2(x−2αt)+ξ0)−1

)}1/2

× ei(αx+βt). (52)

If we set κ = ±1, we obtain

ψ(x, t) = ±
{√

β + α2

2

(
1 + coth

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

× ei(αx+βt), (53)
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ψ(x, t) = ±i
{√

β + α2

2

(
1 + coth

(
±
√
β + α2(x− 2αt) + ξ0

))}1/2

× ei(αx+βt). (54)

4 Conclusions

In this paper, we have proposed the generalized Kudryashov method for solving the
Enkhaus equation. This work has illustrated that the solutions obtained in [30] are con-
sidered as a special case of our obtained solutions and a new results have been obtained
using this method. This method is direct, effective and can be extended for solving many
systems of nonlinear PDEs. The soliton solutions that are retrievable from this equation
are topological and singular soliton solutions only. Being a dissipative model, it is not
possible to obtain non-topological soliton solution. Therefore, it makes sense that this
model only retrieves singular and topological soliton solutions.

Acknowledgment. The authors express their sincere thanks to the referees for their
careful review of this manuscript and their useful suggestions.
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