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Abstract. In this paper, a finite-dimensional ordinary differential equation (ODE) model is proposed
for predicting the temperature profile with microwave heating to accomplish lower computing
complexity. The traditional parabolic partial different equation (PDE) model with integrating
Maxwell’s equation and heat transport equation is not suitable for designing the on-line controller.
Based on the obstruction, using an auxiliary function derives an intermediate model, which
is analyzed and discussed for model reduction by employing the parameter separation method
and Galerkin’s method. The simulation experiments on one-dimensional waveguide and cavity
demonstrate that the proposed approximate model is effective.

Keywords: model reduction, temperature profile, microwave heating.

1 Introduction

Microwave applications for thermal purposes have obtained vast application in domestic
usage and are attracting much attention in industrial applications over several decades
[5]. In some certain industrial areas, the microwave heating has become an established
technology, which includes food processing, wood drying, organic chemistry and phar-
maceutical industry [2, 4, 11, 17, 21]. Under microwave irradiation, the molecules in di-
electric material are realigned about a million times per second [27], which can assist
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the electromagnetic energy being converted to heat energy in the materials. Because of
this principle, microwave heating has incomparable advantages in terms of the economy
and non-pollution. However, the major drawback encountered during the process of mi-
crowave heating is the inhomogeneous of resultant temperature distribution, leading to
the hotspots and thermal runaway [23, 25].

With the rapid development of hardware and software, numerical simulations gradu-
ally become an indispensable tool for us to further understand the complicated process of
microwave heating, predict the temperature distribution and avoid some evitable experi-
mental expenses. Nonhomogeneous parabolic PDE is a typical expression to describe the
basic principles relationship for electromagnetic field (Maxwell’s equation or Lambert’s
law) and temperature field (conduction, radiation or convection) [1, 14], especially for
the phenomenon of resonant into the sample. In order to obtain the temperature pro-
file from above equations, traditional analytical methods are hardly to get its closed-
form solution, which promotes the development of numerical methods, such as, Finite
Element Method (FEM), Finite-Different Time-Domain (FDTD) method, Moment of
Method (MoM), Finite-Volume Time-Domain (FVTD) method and Transmission Line
Matrix (TLM) method [18,19, 26]. However, some important issues about these methods
need to be addressed, such as the excessive computation time and overload CPU uti-
lization. Moreover, the influence of boundary conditions, initial conditions and external
disturbances will inevitably increase the complexity of calculation. From the view of
cybernetics, the main characteristics of the microwave heating process are that the outputs,
inputs, state variables and parameters are changing with the time domain and spatial
domain. That is another insufficient for the traditional PDE model to directly design the
close-loop controllers [20]. Therefore, it is necessary to readily predict the distribution of
temperature in order to lay a foundation for accurate on-line control.

Mathematically, the main characteristics of conventional microwave heating model is
that the solution of parabolic PDE can be decomposed as the multiply of time domain and
spatial domain [13]. If we only consider the function of spatial differential operator, its
eigenspectrum can be divided into infinite discrete components [8]. Zhong applies above
method to transform the waveguide heating model into infinite-dimensional ODEs with
the zero boundary condition and zero initial condition [28]. While the nonhomogeneous
or mixed boundary condition is another important factor to influence the efficiency of
heating and it is difficult to obtain eigenfunctions of spatial differential operator directly.
To solve these problems, the research efforts focus on applying an auxiliary function to
achieve a more complicated equivalent PDE, including not only the states of microwave
irradiation and heat transfer, but also the information of boundary conditions. In this case,
the Galerkin’s method is applied to partition the infinite-dimensional model into a finite-
dimensional slow complement and an infinite-dimensional stable fast one [3, 6, 7, 10, 15],
where the slow (finite-dimensional) model can also approximately describe the dynamic
performance for temperature rise.

In this work, we focus on developing a novel approximate nonlinear temperature
model for one-dimensional microwave heating with mixed or nonhomogeneous boundary
conditions. The layout of the remainder of the paper is as follows: Some fundamental
theories of electromagnetic and thermodynamic fields for one-dimensional microwave
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traditional is presented in Section 2, such as, Maxwell’s equation, heat transport equation
and boundary conditions. Then, the intermediate model with homogeneous boundary
condition is obtained by introducing an auxiliary function successfully in order to provide
facilities for time-spatial separation and model reduction. Because the finite-dimensional
ODE can capture the primary dynamics of PDE model, the novel nonlinear temperature
model is deduced by applying Galerkin’s method and analyzing the relationship between
input and output in Section 3. In order to verify the nonlinear model, the results of
traditional model are simulated in some points by Matlab to contrast with the novel model
in Section 4, whose results demonstrate that the methodology could provide important
guarantee for control algorithm in the next step.

2 One-dimensional traditional microwave heating model

With no loss generality, a microwave heating appliance consists of three major compo-
nents: the magnetrons, transmission lines and cavities [22]. Resulting from the accel-
eration of charge, electromagnetic radiation is generated in magnetrons, which mainly
depends on the interaction with powerful external magnet and cathode voltage. Transmis-
sion lines are usually hollow tubes in which the microwave energy can be propagated.
For the process of heating materials, a number of modes exist in microwave cavities.
However, most of modes in the propagation of electromagnetic wave are usually neglected
as they have little effect on temperature. In order to simplify the analysis process for one-
dimensional heating, this paper only considers a slender material exposed the TEM modes
in the microwave heating appliances.

2.1 Microwave propagation in heating material

Electromagnetic wave is constituted of the electric and magnetic field orthogonal to each
other. And we could first assume that the electromagnetic wave propagates along the
z-axis with an ejωt dependence. For general materials, the electric and magnetic field can
be rewritten as

~E(x, y, z) =
[
ē(x, y) + ẑez(x, y)

]
e−jβz,

~H(x, y, z) =
[
h̄(x, y) + ẑhz(x, y)

]
e−jβz,

where ē(x, y) and h̄(x, y) denote the transverse (x̂, ŷ) electric and magnetic field compo-
nents; ez and hz are the longitudinal electric and magnetic field components, respectively.

Assuming that the region and conductive material are source-free, linear, isotropic and
homogeneous, Maxwell’s equations can be deduced as phasor form

∇× ~E = −jωµ ~H, ∇× ~H = jωε ~E,

where µ and ε are magnetic permeability and permittivity; ω is the radian frequency.
Considering the non-magnetic material, we can obtain the simplified equation

∇2 ~E + ω2µε~E = 0. (1)
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For an insulating and non-magnetic material, we can define that

k2 = ω2µ0ε0(ε′ + iε′′),

where µ0 and ε0 are the free space magnetic permeability and permittivity; ε′ is the
relative dielectric constant which represents the materials ability to store electrical en-
ergy and ε′′ is the relative dielectric loss which stands for dielectric loss through energy
dissipation [1]. Thus, the complex quantity of propagation constant can be expressed as

k = α+ iβ,

where

α =
ω

c

√
ε′(
√

1 + tan2δ + 1)

2
and β =

ω

c

√
ε′(
√

1 + tan2δ − 1)

2
,

where the loss tangent (tan δ = ε′′/ε′) indicates the ratio of the dielectric loss to the
dielectric constant and c is the velocity of light. Then, for one-dimensional microwave
heating model, the Helmholtz equation of (1) reduces to

∂2Ex
∂z2

+ k2Ex = 0. (2)

By using substitution method, the solution for the electric field Ex in (2) is obtained

Ex = E+e−jkz + E−ejkz, (3)

where E+ and E− denote the arbitrary amplitude constants. And the first and the second
terms in (3) represent for the propagation of microwave in the +z and −z direction,
respectively.

2.2 Traditional nonhomogeneous heating transport equation

To model the process of microwave heating, an nonhomogeneous heat equation is deduced
to describe the distribution of temperature, which depends on thermo physical properties
of the material [9, 12,16, 23]. In order to simplify the process of analysis, a mathematical
model is proposed based on the following six assumptions:

(A1) uniform initial temperature,
(A2) homogeneous and isotropic material,
(A3) no mass transfer,
(A4) temperature independent thermal and dielectric properties,
(A5) convective boundary conditions,
(A6) no volume changes.

The energy balance during microwave heating can be expressed as

ρ(T )Cp(T )
∂T

∂t
= div

(
κ(T )∇T

)
+ Pabs(x, y, z, t), (4)
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where ρ(T ), Cp(T ) and κ(T ) are material density, specific heat capacity and thermal con-
ductivity, respectively; Pabs(x, y, z, t) is the internal heating source term. Assuming that
we only consider the one-dimensional microwave heating process, (4) can be simplified
as

ρ(T )Cp(T )
∂T

∂t
= κ(T )

∂2T

∂z2
+ Pabs(z, t).

The following thermal boundary condition is exposed in the air. And both ends of
slender materials are assumed to lose heat by natural convection and radiation:

κ∇T = h(T − T∞) + σhεh
(
T 4 − T 4

∞
)
, (5)

where T∞ is the ambient temperature; h is the heat transfer coefficient; εh is the emissivity
of the sample and σh is the Stefan–Boltzmann constant (5.67 × 10−8 W/m2K4). In
general, σhεh(T 4 − T 4

∞)→ 0, (5) can be simplified that

κ∇T = h(T − T∞).

2.3 Estimating internal heat source

For most of inner cavity wall, the microwave energy can be totally reflected by perfect
electrical conductors, due to the characteristics of σ → ∞, whose penetrated depth is
approximately seen as zero. And the wall will also ensure the security for the usage of
microwave further. By using Faraday’s law and Gauss’ theorem [24], the perfect boundary
condition can be given as

Et = 0, Hn = 0,

where subscripts t and n denote the components of tangential and normal direction,
respectively. If the energy loss about surfaces between different materials is neglected,
the continuity boundary condition can be also denoted as

Et = E′t, Ht = H ′t, Pt = P ′t ,

where the superscript denotes one of the different materials.
With knowledge of the mentioned electric field distribution, the absorbed microwave

power for the slender sample is

Pabs(z) =
1

2
ωε0ε

′′ExE
∗
x, (6)

whereE∗x is the complex conjugate ofEx. IfE+= |E+|eiϕAe−βz andE−= |E−|eiϕBeβz,
the relationship between the E+ and E− can be denoted as

E−= Γ
∣∣E+

∣∣e−2βleiϕBeβz, (7)

where Γ in (7) denotes the reflection coefficient in the boundary of sample; ϕA and ϕB
represent the phase in the different boundary. With (6) and (7), the expression for power
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dissipated per unit volume by the electric fields is

Pabs(z) =
1

2
ωε0ε

′′[∣∣E+
∣∣2e−2βz +

∣∣E−∣∣2e2βz

+ 2
∣∣E+

∣∣∣∣E−∣∣ cos(ϕA − ϕB + 2αz)
]

=
1

2
ωε0ε

′′[∣∣E+
∣∣2e−2βz +

∣∣ΓE+e−2βl
∣∣2e2βz

+ 2Γ
∣∣E+

∣∣2e−2βl cos(ϕA − ϕB + 2αz)
]
.

3 A finite-dimensional ODE model for microwave heating

Mathematically, the process of microwave heating belongs to the multi-physics field
coupled system, which is described by PDEs arising from heating balances and mi-
crowave transport. For a completely known model of nonlinear parabolic PDE, with
mixed or nonhomogeneous boundary conditions, its results could approximate to a lower
dimensional ODE through modal decomposition by applying the Galerkin’s method.

3.1 Formulation for intermediate PDE model

In terms of the aforementioned one-dimensional process of microwave heating, the fun-
damental model can be expressed as follows:

ρ(T )Cp(T )
∂T

∂t
= κ(T )

∂2T

∂z2
+
ωε0ε

′′

2

[∣∣E+
∣∣2e−2βz +

∣∣ΓE+e−2βl
∣∣2e2βz

+ 2Γ
∣∣E+

∣∣2e−2βl cos(ϕA − ϕB + 2αz)
]
, z ∈ [0, l], (8)

subject to the boundary condition of heating transport

Tz(0, t) = f1(T ), Tz(l, t) = f2(T ) (9)

with the initial condition
T (z, 0) = ϕ(z, 0), (10)

where f1(T ) and f2(T ) denote the nonhomogenous boundary conditions in different
positions, respectively; ϕ(z, 0) is the initial temperature distribution.

In order to further deduce (8)–(10) to a class of infinite dimensional ODE equations,
it is essential to derive an intermediate PDE model with the homogeneous boundary
conditions, which is stated in the following theorem:

Theorem 1. Assume the nonhomogeneous or mix boundary in (9) can be obtained. Then,
there exists the following relationship holds:

T (z, t) = Θ(z, t) +

(
f2(T )− f1(T )

2l
z2 + f1(T )z

)
. (11)
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Then, the traditional PDE model (8)–(10) can be equivalent to the following intermediate
model:

∂Θ

∂t
=

κ(T )

ρ(T )Cp(T )

(
∂2Θ

∂z2
+
f2(T )− f1(T )

l

)
+

1

ρ(T )Cp(T )
Q(z)u

= k1

(
∂2Θ

∂z2
+
f2(T )− f1(T )

l

)
+ k2Q(z)u, z ∈ [0, l], (12)

subject to the homogeneous boundary condition

Θz(0, t) = 0, Θz(l, t) = 0 (13)

with the initial condition

Θ(z, 0) = ϕ(z, 0)−
(
f2(T )− f1(T )

2l
z2 + f1(T )z

)
, (14)

where k1 = κ(T )/(ρ(T )Cp(T )) and k2 = 1/(ρ(T )Cp(T )); u = 1/2ωε0ε
′′|E+|2;

Q(z) = [e−2βz + |Γ e−2βl|2e2βz + 2Γ e−2βl cos(ϕA − ϕB + 2αz)].

Proof. To obtain homogeneous boundary conditions, an auxiliary function ω′(z, t) and
a new unknown function θ(z, t) are introduced. T (z, t) can be divided as

T (z, t) = ω′(z, t) + θ(z, t),

where θ(z, t) can be obtained by the following equation with homogeneous boundary
condition and initial condition:

∂θ

∂t
= k1

∂2θ

∂z2
+ k2Q(z)u, z ∈ [0, l], (15)

subject to the homogeneous boundary condition

θz(0, t) = 0, θz(l, t) = 0 (16)

with the initial condition
θ(z, 0) = ϕ(z, 0). (17)

And the auxiliary function ω′(z, t) could be determined by

∂ω′

∂t
= k1

∂2ω′

∂z2
, z ∈ [0, l], (18)

subject to the nonhomogeneous boundary condition

ω′z(0, t) = f1(T ), ω′z(l, t) = f2(T ) (19)

with the initial condition
ω′(z, 0) = 0. (20)

http://www.mii.lt/NA



Finite-dimensional ODE model for microwave heating 505

It is obvious that the eigenfunction of spatial differential operator in (15)–(17) could
be easily obtained. But the one in (18)–(20) is still different to be derived. To this end,
we find another function up(z, t), which satisfies the boundary conditions in (19). Then,
when v(z, t) = ω′(z, t)−up(z, t), the v(z, t) satisfies the homogeneous Neumann bound-
ary conditions. Due to not existing steady-state solution for up(z, t), we specially define
the following particular solution:

up(z, t) = gt+ h(z), (21)

where g is constant, h(z) is the function of z. (21) denotes that the variation of tempera-
ture with constant rate. Substituting (21) into (19), the coefficients of (21) can be rewritten
as

g = (up)t = k1(up)zz = k1hzz(z),

then
h(z) =

g

2k1
z2 + pz + q. (22)

Substituting (19) into (22), the solution of (21) can be rewritten as (for simplify, q = 0)

up(z, t) =
f2(T )− f1(T )

l
k1t+

f2(T )− f1(T )

2l
z2 + f1(T )z. (23)

It is interesting to note that T (z, t) can also be separated the following two terms:

T (z, t) = θ(z, t) + v(z, t) + up(z, t)

= Θ(1)(z, t) + up(z, t). (24)

Substituting (24) into (8)–(10), the solution of Θ(1)(z, t) can be determinated by

∂Θ(1)

∂t
= k1

∂2Θ(1)

∂z2
+ k2Q(z)u, z ∈ [0, l], (25)

subject to the homogeneous boundary condition

Θ(1)
z (0, t) = 0, Θ(1)

z (l, t) = 0 (26)

with the initial condition

Θ(1)(z, 0) = ϕ(z, 0)−
(
f2(T )− f1(T )

2l
z2 + f1(T )z

)
. (27)

In order to facilitate the following analysis, the temporal term in (23) is substituted
into (25)–(27). The intermediate model (11)–(14) can be obtained.

Remark 1. For the microwave heating transport model (8) with nonhomogeneous bound-
ary condition (9), it is different to directly derive the eigenfunction of the spatial operator.
By introducing the auxiliary function, the intermediate PDE (12) with homogeneous
boundary condition (13) can be obtained, whose results can be consistent with the tra-
ditional PDE model by the relationship (11).
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3.2 Formulation of an infinite-dimensional ODE model

According to the theorem of variables separation, the solution of homogeneous parabolic
PDEs can be expressed as the time-space decoupled form:

Θ(z, t) = φ(z)G(t).

Thus, the eigenvalue problem of operator ∂2T/∂z2 in (12) takes the solution as

λ0 = 0, φ0(z) =
1

2
,

λi = −
(
iπ

l

)2

, φi(z) = cos
iπz

l
, i = 1, 2, . . . ,∞,

where λi denotes eigenvalues and φi(z) denotes the corresponding eigenfunctions.
Thus, the solution of (12)–(14) can be approximately expressed in an orthogonally

decoupled series:

Θ(z, t) =

∞∑
i=0

Θ̄i(t)φi(z), (28)

where Θ̄i(t), i = 0, 1, 2, . . . , represent expansion coefficients associated with φi(z).
Based on the aforementioned analysis, substituting (28) into (12), the superposition

of (12) will be written as
∞∑
i=0

˙̄Θi(t)φi(z) =

∞∑
i=0

(
−k1Θ̄i(t)

(
iπ

l

)2

φi(z)

+
2

l

l∫
0

(
k1gφi(z) + k2Q(z)φi(z)u

)
dzφi(z)

)
. (29)

By simplifying (29), the infinite-dimensional ODE model can be expressed as

˙̄Θi(t) = k1λiΘ̄i(t) + k1ḡi + k2Q̄iu, (30)

where

ḡi =
2

l

l∫
0

gφi(z) dz, Q̄i =
2

l

l∫
0

Q(z)φi(z) dz. (31)

And the initial condition can be expressed as

Θ̄i(0) =
2

l

l∫
0

Θ(z, 0)φi(z) dz. (32)

Therefore, referring to (30)–(32), a general form of infinite-dimensional nonlinear
form is rewritten as follows:

˙̄Θ(t) = AΘ̄(t) + Bu(t) + F, Θ(z, t) = CΘ̄(t), (33)
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where

Θ̄(t) =
[
Θ̄0(t), Θ̄1(t), Θ̄2(t), . . . , Θ̄n(t), . . .

]T
,

A = k1 diag(λ0, λ1, λ2, . . . , λn, . . .),

B = k2
2

l

l∫
0

Q(z)
[
φ0(z), φ1(z), φ2(z), . . . , φn(z), . . .

]T
dz,

C =
[
2φ0(z), φ1(z), φ2(z), . . . , φn(z), . . .

]
,

F = k1
2

l

l∫
0

g
[
φ0(z), φ1(z), φ2(z), . . . , φn(z), . . .

]T
dz,

Θ̄(0) =
2

l

l∫
0

Θ(z, 0)
[
φ0(z), φ1(z), φ2(z), . . . , φn(z), . . .]T dz.

3.3 Model reduction

To reduce the infinite-dimensional nonlinear ODE model (33) to finite-dimensional non-
linear ODE model, the following three assumptions [8] are made for the eigenspectrum of
the spatial differential operator ∂2T/∂z2 in (12). For simplicity, a class of all eigenvalues
can be rewritten as σ(Ā) = {λ0, λ1, λ2, . . . , λn, . . . }.

Assumption 1. Re{λ0} > Re{λ1} > Re{λ2} > · · · > Re{λn} > · · · , where Re{λn}
represents the real part of λn.

Assumption 2. σ(Ā) can be divided as σ(Ā) = σ1(Ā) + σ2(Ā), where σ1(Ā) con-
sists of first n (with n finite) eigenvalues, i.e. σ1(Ā) = {λ0, λ1, . . . λn} and |Re{λ1}|/
|Re{λn}| = O(l).

Assumption 3. Re{λn+1} < 0 and |Re{λn}|/|Re{λn+1}| = O(ε), where ε := |Reλ1|/
|Reλn+1| < 1 is a small positive parameter.

Remark 2. The above assumptions for parabolic PDEs are always satisfied the finite
number of unstable eigenvalues, which means the eigenspectrum can be divided into an
infinite-dimensional stable fast part and a finite-dimensional slow part. It signifies that
finite-dimensional ODE can approximately describe the dynamic behaviors for above
parabolic PDE.

Thus, Θ̄s = span{φ0, φ1, φ2, . . . , φm} and Θ̄f = span{φm+1, φm+2, . . . } are de-
fined as the subsets of A. Correspondingly, orthogonal projection operators Ps and Pf
are chosen to decompose the state of Θ̄ as

Θ̄ = Θ̄s + Θ̄f = PsΘ̄ + Pf Θ̄. (34)

Nonlinear Anal. Model. Control, 21(4):498–514
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Therefore, by substituting (34) into (33), typical finite-dimensional nonlinear model
can be expressed in the following equivalent form:

˙̄Θs(t) = AsΘ̄s(t) + Bsu(t) + Fs, Θs(z, t) = CsΘ̄s(t),

where

Θ̄s(t) =
[
Θ̄0(t), Θ̄1(t), Θ̄2(t), . . . , Θ̄m(t)]T,

As = k1 diag(λ0, λ1, λ2, . . . , λm),

Bs = k2
2

l

l∫
0

Q(z)
[
φ0(z), φ1(z), φ2(z), . . . , φm(z)

]T
dz,

Cs =
[
2φ0(z), φ1(z), φ2(z), . . . , φm(z)

]
,

Fs = k1
2

l

l∫
0

g
[
φ0(z), φ1(z), φ2(z), . . . , φm(z)

]T
dz,

Θ̄s(0) =
2

l

l∫
0

Θ(z, 0)
[
φ0(z), φ1(z), φ2(z), . . . , φm(z)

]T
dz.

Therefore, based on aforementioned analysis, the approximate temperature distribu-
tion in microwave heating process can be rewritten as

T (z, t) = Θs(z, t) +

(
f2(T )− f1(T )

2l
z2 + f1(T )z

)
.

4 Simulation and validation

In this section, we validate and contrast, through computer simulations, the proposed
finite-dimensional nonlinear model in aforementioned section. To this end, we first as-
sume a heated sample exposed in microwave irradiation and its length is equal with the
wavelength of microwave, whose schematic diagram is shown in Fig. 1.

If the sample is filled with the resonance cavity, the phase of reflection microwave
is ϕref |L=l = ϕInc|L=l and reflection coefficient is Γ ≡ 1. Thus, the expression of
nonhomogeneous term in (8) is P0[e−2βz + |e−2βl|2e2βz + 2e−2βl cos(2αz)].

Throughout the history of microwave heating, food processing has become one of
the most successful and largest applications over the three decades. Deionized water is

Figure 1. Schematic diagram for the thin water column in resonance cavity.
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Figure 2. Global temperature estimation for finite-dimensional nonlinear form via resonant cavity heating.

usually chosen to be the experimental and simulation object by many researchers because
of the good absorption properties. As an illustration, they can be regarded as constant
because of the small variation of the physical characteristics with temperature. Thus,
thermodynamic parameters, such as, density ρ, specific heat Cp and heat conductivity
κ, can be equaled with 1 g/cm3, 4.2 J/g ◦C and 0.0054 W/cm ◦C; At the frequent
microwave of 2.45 GHz, the relative dielectric constant ε′ and relative dielectric loss ε′′

are 72.8 and 6.5, respectively. Based on above priori knowledge and proposed method in
Section 3, the global results of simulation for finite-dimensional nonlinear representation
with uniform initial temperature 20 ◦C, nonhomogeneous boundary conditions f1(T ) =
1 ◦C/cm and f2(T ) = −1 ◦C/cm, constant absorbed input power density 15 W/cm2 and
finite dimensionality m = 5 are shown in Fig. 2.

In order to analyze the validity of above proposed finite-dimensional nonlinear model,
we choose three points which are located in 0.37 cm, 0.71 cm and 1.11 cm, respectively,
to contrast the trend of temperature rising with the closed-form solutions from traditional
numerical model (8)–(10), which is used FEM. And the estimating temperatures by dif-
ferent models in different positions are shown in Fig. 3. For the sake of comparison, it
manifests that the estimation temperature used the finite-dimensional nonlinear model
can approximately describe the trend of temperature rise.

In microwave heating field, waveguide is also one of the main appliances and its
schematic diagram is shown in Fig. 4. In a nutshell, on the condition that the length of
sample is greater than the two times of penetration depth, we usually regard both the
transmitted microwave and the reflection coefficient Γ as 0. Similarly, the expression of
nonhomogeneous term in (8) can be written in P0e−2βz .

Thus, above simulation object is also chosen to validate the proposed finite-dimen-
sional nonlinear model in another microwave heating appliance. For the same initial
conditions and input power density but the different finite dimensionality m = 40 and
homogeneous Neumann boundary conditions, the global temperature estimation in waveg-
uide is shown in Fig. 5. To future verity the finite-dimensional model, the closed-form

Nonlinear Anal. Model. Control, 21(4):498–514
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Figure 3. Estimating temperature for the finite-dimensional nonlinear model and traditional numerical model
for resonant cavity heating in: (a) 0.37 cm, (b) 0.71 cm, (c) 1.11 cm.

Figure 4. Schematic diagram for the thin water column in waveguide.

solutions for traditional finite-dimensional waveguide model is also chosen to compare
the temperature rise curves, which are shown in Fig. 6.

Furthermore, the above two groups of simulation experiments demonstrate that the
proposed finite-dimensional nonlinear model could approximately describe the distri-
bution of temperature in the process of microwave for resonant cavity or waveguide
heating. And the finite-dimensional nonlinear form also can reduce the time-consuming
simulations heavily and obtain the state variable easily, so it expects to be applied in
designing and optimizing intelligent controller in the next step.
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Figure 5. Global temperature estimation for finite-dimensional nonlinear model via waveguide heating.
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Figure 6. Estimating temperature for the finite-dimensional nonlinear model and traditional numerical model
for waveguide heating in: (a) 0.4 cm, (b) 3 cm, (c) 6 cm.
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5 Conclusion

In this paper, a novel approximate temperature model for microwave heating process is
proposed and validated by model reduction and simulation, which overcomes the insuffi-
cient of controller design for parabolic PDEs. The typical characteristic of microwave
heating process is strong coupling, especially for the electromagnetic field and ther-
modynamic field. And the traditional mathematical model concludes a set of relevant
equations, which consist of a nonlinear PDE, boundary conditions and initial conditions.
But the existence of nonhomogeneous boundary conditions will lead to impossibility for
directly deriving the eigenfunctions of spatial operator. Thus, we obtain and prove an
intermediate PDE by introducing an auxiliary function, which can be transformed into
infinite-dimensional ODE. Therefore, nonlinear temperature model should be acquired as
the relationship between input and output solved by the application of Galerkin’s method.
In order to validate the proposed methodology, we successfully compare the temperature
rise curves between the proposed nonlinear model and traditional numerical model. It
demonstrates that the finite-dimensional model could also approximately describe dis-
tribution of temperature in microwave heat processing. Further researches are underway
for the intelligent controller design using the proposed temperature model in industrial
microwave ovens.
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