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Abstract. This paper presents finite difference approximations of one dimensional in space
mathematical model of a bacterial self-organization. The dynamics of such nonlinear systems can
lead to formation of complicated solution patterns. In this paper we show that this chemotaxis-
driven instability can be connected to the ill-posed problem defined by the backward in time
diffusion process. The method of lines is used to construct robust numerical approximations. At
the first step we approximate spatial derivatives in the PDE by applying approximations targeted
for special physical processes described by differential equations. The obtained system of ODE is
split into a system describing separately fast and slow physical processes and different implicit and
explicit numerical solvers are constructed for each subproblem. Results of numerical experiments
are presented and convergence of finite difference schemes is investigated.

Keywords: finite difference method, diffusion-advection-reaction models, splitting schemes,
stability, convergence, backward-time parabolic problem.

1 Introduction

Many mathematical problems of biological systems are described by non-stationary and
non-linear diffusion-advection-reaction equations. The dynamics of their solutions can be
very complicated, the interaction of different physical processes can lead to development
of spatial and temporal patterns and instabilities [1]. The development of complicated
spatial-time patterns was observed also in real bioluminescence images (see [2, 3]).

In addition, solutions of biological and chemical systems satisfy special properties,
such as positivity, boundedness and conservativity [4]. Therefore the development of
robust and efficient numerical algorithms for solution of such problems still remains
a very important challenge of computational mathematics.

A substantial number of research exists on systems related to the chemotaxis-growth
systems. Here we comment on some specific results, closely connected to our analysis
(see the paper of Painter and Hillen [5] for a recent excellent review on this topic).

It is well-known that the theory of exponential attractors explains important prop-
erties of dynamical systems in infinite-dimensional spaces. The exponential attractor is
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a compact set with finite fractal dimension which contains a global attractor interiorly and
attracts every trajectory in an exponential rate. Exponential attractors are also known to
have very strong stability in approximation. This gives a possibility to show a global relia-
bility of numerical computations. Recently very important results on the fractal dimension
estimate of the global attractors for abstract quasilinear parabolic evolution equations are
obtained by Aida et al. [6]. Application of these methods for chemotaxis-growth systems
is done by Nakaguchi and Efendiev [7]. Using non-negativity of solutions they managed
significantly to improve dimension estimates with respect to the chemotactic parameter.

Many models of chemotaxis have been formulated [8]. Here we note the paper of
Painter and Hillen [5], where the dynamic properties of one-dimensional Keller and Segel
model are deeply investigated. Their analysis gives a template for exploration of different
models of chemotaxis: the linear stability of the homogeneous steady state is investigated,
then it is shown that most of multiple-peak patterns are unstable and a coarsening process
leads to a unique global aggregation. It is revealed that the long-time dynamics of the solu-
tions fall into on of the four classes: homogeneous steady state, stationary spatial patterns,
spatio-temporal periodic and irregular solutions. We note also the analysis of numerical
stability for the various solution classes, when the influence of small perturbation applied
at some time moment is computed by comparing perturbed and unperturbed solutions.
The numerical Lyaponov exponent is used to get a quantative measure for this analysis.

It is well-known that solutions of the one-dimensional case may diverge in a finite
time only if the chemoattractant does not diffuse, but in higher dimensional spaces di-
vergences are common. The Keller and Segel model allows pattern formation and spatio-
temporal chaos in one spatial dimension, but these features have not been investigated
in full detail even in the (2+1)-dimensional case [9]. Thus the development of efficient
numerical algorithms (including parallel algorithms) for simulation of multidimensional
chemotaxis models is an important task. Efficient and accurate finite element solvers
for two-dimensional chemotaxis problems are proposed and investigated by Strechl et
al. [10]. They have analyzed the monolithic and decoupled variants of different algorithms
and applied various techniques for linearization of the obtained discrete systems.

In this paper we consider the development of numerical algorithms to solve one
system of PDE proposed in [11] for simulation of the bacterial self-organization in cir-
cular container. We suggest to explain a chemotaxis-driven instability by connecting it
to the ill-posed backward in time diffusion process. The main goal of this paper is to
construct robust and efficient numerical approximations. These algorithms are targeted
for development of parallel algorithms in the case of 2D and 3D problems. The second
goal is to to investigate the convergence of proposed finite-difference schemes in the case
of irregular dynamical behaviour of solutions.

The rest of the paper is organized as follows. In Section 2 the mathematical model for
simulation of the bacterial self-organization in circular container along the contact line is
presented. Linear stability analysis of the model is done and it is shown that chemotaxis-
driven instability can be connected to the ill-posed problem defined by the backward in
time diffusion process. In Section 3 we give details of the numerical techniques which are
used for the construction of finite-difference schemes. Apriori estimates of the bounded-
ness and positivity of the discrete solution are proved. Results of numerical experiments
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are presented in Section 4. The convergence of the discrete solution is investigated in the
case of regular and irregular dynamical behaviour of the nonlinear system. For irregular
case, it is proposed to consider shorter time intervals for the classical convergence anal-
ysis, then the accuracy of the finite difference scheme can be investigated by using the
Runge rule. Finally, in Section 5 some conclusions are formulated.

2 Problem formulation

2.1 Mathematical model

We consider a mathematical model for simulation of the bacterial self-organization in
circular container along the contact line, which is proposed in [11]. An excellent review
on PDE models for chemotaxis can be found in [8] and references contained therein.

By using some simplifying assumptions, the mathematical model is defined as a sys-
tem of one dimensional nonlinear equations:

∂u

∂t
= D

∂2u

∂x2
− ∂

∂x

(
χu

(1 + αv)2

∂v

∂x

)
+ γru(1− u),

∂v

∂t
=
∂2v

∂x2
+ γ

(
up

1 + βup
− v
)
, x ∈ (0, 1), t > 0,

(1)

where u is the dimensionless cell density, v is the dimensionless chemoattractant concen-
tration, α ≥ 0 defines the receptor sensitivity, β > 0 stands for saturating of the signal
production, γ > 0 defines the ratio of the spatial and temporal scales, and p ≥ 1. Thus
a simple model with the linear production of chemoattractant is replaced with a saturating
term which depends on u in nonlinear way, and a chemotactic sensitivity coefficient is
also modified to take into account a quadratic saturation with respect to v.

The initial conditions are defined as

u(x, 0) = u0(x), v(x, 0) = 0, x ∈ [0, 1]. (2)

The periodicity conditions are formulated as boundary conditions:

u(0, t) = u(1, t),
∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=1

,

v(0, t) = v(1, t),
∂v

∂x

∣∣∣
x=0

=
∂v

∂x

∣∣∣∣
x=1

.

(3)

2.2 Analysis of the mathematical model

In [11], the non-deterministic initial conditions are investigated:

u(x, 0) = 1 + ε(x), x ∈ [0, 1],

where ε(x) is a 20% random uniform spatial perturbation.
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A random perturbation of initial data is not a necessary condition for self-organization
of the solution. The sensitivity of the solution with respect to initial data should be
investigated, i.e. well-posedness of the mathematical model should be analysed. Many
technological and physical processes can lead to development of spatial and temporal
instabilities in solutions, we mention only a fingering instability in thin evaporating liquid
films [12, 13], in buoyancy-driven fluid filled cracks [14] or in porous media flows [15],
and pattern formation in reaction-diffusion systems (see a fundamental book of Murray
[16] and references given in it). The chemotaxis-driven instability is investigated in many
papers and different types of dynamic behaviour of nonlinear systems can be observed,
see, e.g., the classical Keller–Segel model [16, 17].

The dynamics of nonlinear systems can be investigated by various mathematical tech-
niques, an extensive review with many examples and applications can be found, e.g.,
in [1, 18] and references contained in these books.

Linear stability analysis

Here we apply a standard linear stability analysis around the homogeneous steady state
solution [5, 16]. The steady state of model (1) is given by ū = 1, v̄ = 1/(1 + β).
Linearization around this solution gives the following system:

∂U

∂t
= D

∂2U

∂x2
− χ

(1 + α/(1 + β))2

∂2V

∂x2
− γrU,

∂V

∂t
=
∂2V

∂x2
+ γ

(
p

(1 + β)2
U − V

)
,

for small perturbations U(x, t), V (x, t). The stability of the steady state depends on the
temporal eigenvalues of the stability matrix

Ak =

(
−Dk2 − γr χk2

(1+α/(1+β))2

γ p
(1+β)2 −k2 − γ

)
,

where k ≥ 0 denotes the wavenumber. In the case of zero-flux boundary conditions and
the interval [0, L] we have k = nπ/L, n ≥ 0. If the matrix Ak has at least one eigenvalue
with a positive real part, the homogeneous steady state is unstable [5,16]. The eigenvalues
λ of Ak are obtained from the characteristic equation

λ2 +
(
Dk2 + γr + k2 + γ

)
λ+

(
Dk2 + γr

)(
k2 + γ

)
− γpχk2

(1 + β + α)2
= 0.

Rescaling k2 = γl2, we can use results of stability analysis in [5]. Then we obtain the
following necessary condition for stability matrixAk to have an eigenvalue with a positive
real part:

pχ

(1 + β + α)2
> D + r + 2

√
rD.

We see that this condition does not depend on parameter γ.
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Backward in time diffusion

In this paper we apply a new approach, when the chemotaxis-driven instability is cor-
related to the ill-posed problem defined by the backward in time diffusion process. In
general, the well-posedness of the model is connected to the important property of chemo-
taxis process, that the velocity of advection of u depends on the gradient of the chemo-
attractor. Thus, if the chemo-attractor depends monotonically on the cell density, then
such a dependence leads to anti-diffusion flow of the cell density. For simplicity of anal-
ysis, let us assume that parameter γ is sufficiently large, but γr ∼ O(1), then due to the
fast relaxation we get that

v ≈ up

1 + βup
, x ∈ (0, 1), t > 0.

Thus in the limit case, equation (1) can be written as a nonlinear diffusion-reaction
equation

∂u

∂t
= D

∂2u

∂x2
− ∂

∂x

(
χpup

(1 + αv)2(1 + βup)2

∂u

∂x

)
+ γru(1− u). (4)

For some values of parameters equation (4) describes a backward in time parabolic prob-
lem and therefore it is ill-posed [19,20]. Solution of (4) does not depend continuously on
initial data and small perturbations can lead to unbounded changes of the solution. Such
a scenario potentially can describe the dynamics of the model (1). We note that values of
parameters, which were used in [11] for computational simulations, belong to this critical
set.

Next we present a simple analysis of the backward parabolic equation. As an example
we consider a linear backward parabolic equation with the Dirichlet boundary conditions

∂u

∂t
= D

∂2u

∂x2
, t < T,

u(x, T ) = u0(x), 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0.

(5)

Let define the initial condition u0(x) in (5) as a solution of the forward parabolic equation:

∂v

∂t
= D

∂2v

∂x2
, t > 0,

v(x, 0) = exp
(
−(x− 0.5)6

)
, 0 ≤ x ≤ 1,

(6)

at t = T , i.e. u0(x) = v(x, T ). The well-known properties of the forward parabolic
equation are straightforwardly obtained by applying the standard Fourier analysis. Let
assume that the initial condition can be written as v(x, 0) =

∑N
n=1 cn sin(πnx). Then

a solution of parabolic problem (6) is given by

v(x, t) =

N∑
n=1

cn exp
(
−Dπ2n2t

)
sin(πnx).
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We see that high modes of the Fourier sum are damped faster and v(x, t) becomes smoot-
her for t > 0. Fig. 1 shows the initial distribution v(x, 0) and the solution v(x, T ) of
classical parabolic problem (6) at time T = 0.1. The diffusion coefficient D = 0.1 is
used in all computations.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t= 0

t=0.1

Fig. 1. Plots of the initial condition v(x, 0) (black) and the solution v(x, T ) (red) of classical
parabolic problem (6). Function v(x, T ) is used as initial condition for the backward

parabolic problem (5). (Online version in colour.)

The Fourier stability analysis of the backward parabolic problem can be done in
a similar way:

v(x, t) =

N∑
n=1

cn exp
(
Dπ2n2(T − t)

)
sin(πnx).

Now we see that high modes of the Fourier sum are growing faster and noise perturbations
(e.g., corresponding to a white noise) are amplified for t > 0.

Fig. 2(a) shows a solution u(x, 0) of the backward parabolic problem at time moment
t = 0 (the initial condition u(x, T ) is defined by the solution v(x, T ) of problem (6)). All
useful information is lost due to amplification of the noise modes.

Regularization of the backward parabolic equation can be done in various ways. Here
we mention two approaches. In the first method the regularization is done by a nonlocal
boundary value problem [21]:

∂uα
∂t

= D
∂2uα
∂x2

, 0 < t < aT ,

αuα(x, 0) + uα(x, aT ) = u0(x), 0 ≤ x ≤ 1,

(7)

with a > 1 being given data and α > 0, the regularization parameter. As an approxima-
tion of u(x, t) we take uα((a− 1)T + t). A priori and a posteriori rules for a selection of
regularization parameter α are proposed in [21], which yield order optimal regularization
methods. The standard Fourier analysis gives an explicit form of the solution

uα(t) =

N∑
n=1

cn
exp (−π2n2Dt)

α+ exp (−π2n2DT )
sin(πnx).

from which the well-posedness of the regularized problem (7) follows.
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In the second approach the ill-posed backward parabolic problem is regularized by
a perturbed well-posed backward parabolic equation [20]:

∂u

∂t
= D

∂2u

∂x2
+ α

∂4u

∂x4
, 0 < t < T ,

u(x, T ) = u0(x), 0 ≤ x ≤ 1,

(8)

with α > 0 being the regularization parameter. The Fourier analysis explains the regular-
ization effect:

u(x, t) =

N∑
n=1

cn exp
(
π2n2

(
D − απ2n2

)
(T − t)

)
sin(πnx).

We see that high modes of the Fourier sum are damped fast and therefore noise per-
turbations are not amplified for t < T . Fig. 2(b) shows a solution of the regularized
problem (8).

We note, that due to non-linearity of the diffusion coefficient, the ill-posedness of the
problem is self-limiting, since

χpup

(1 + αv)2(1 + βup)2
= O

(
1

up

)
for up � 1.

0 0.2 0.4 0.6 0.8 1

-5e+146

0

5e+146

t= 0
t=0.1
t=0, d_reg=5e-7

(a)
0 0.2 0.4 0.6 0.8 1
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1
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t= 0, d_reg=9e-6

(b)

Fig. 2. Plots of solutions of the backward parabolic problem (5): (a) the initial state at
t = 0.1 (red), the exact solution at the final time moment t = 0 (black) and the regularized
solution of (8) at t = 0 (blue) when regularization parameter α is too small; (b) the same
information for regularization parameter α = 0.9 · 10−5. All useful information is lost
in the first case, while v(x, 0) is reconstructed well in the second case. (Online version

in colour.)

3 The finite difference scheme

In this section we present numerical techniques which are used to approximate solu-
tions of system (1)–(3). A comprehensive treatment of theoretical and implementation
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issues of discretization methods for advection-diffusion-reaction problems are given in
the monograph by Hundsdorfer and Verwer [4]. Very interesting applications of these
results for biomedical problems are described by Gerisch and Chaplain [22], Gerisch
and Verwer [23] (see also references given in these publications). Efficient and accurate
finite element solvers for chemotaxis problems are proposed and investigated by Strechl
et al. [10]. They have compared the monolithic approach and the decoupled variant of
algorithms. In particular they have analyzed stability, accuracy and efficiency of the dif-
ferent methods. We note that such results are important when a parallelization strategy
should be selected.

3.1 The method of lines. Discretization in space

We use the method of lines (MOL) approach (see [4, 22]). At the first step we approxi-
mate the spatial derivatives in the PDE by applying robust and accurate approximations
targeted for special physical processes described by differential equations. Domain [0, 1]
is covered by a discrete uniform grid

ωh = {xj : xj = jh, j = 0, . . . , N − 1}, xN = 1

with the grid points xj . On the semidiscrete domain ωh(k) × [0, T ] we define functions
Uj(t) = U(xj , t), Vj(t) = V (xj , t), j = 0, . . . , N−1, here Uj , Vj approximate solutions
u(xj , t), v(xj , t) on the discrete grid ωh at time moment t. We also define the forward
and backward space finite differences with respect to x:

∂xUj =
Uj+1 − Uj

h
, ∂x̄Uj =

Uj − Uj−1

h
.

Using the finite volume approach, we approximate the diffusion and reaction terms in
the PDE system (1) by the following finite difference equations:

ADR1(U, j) = D∂x̄∂xUj + γrUj(1− Uj),

ADR2(V,U, j) = ∂x̄∂xVj + γ

(
Upj

1 + βUpj
− Vj

)
.

The stencil of the discrete scheme requires to use functions defined outside of the grid
ωh. We apply periodicity boundary conditions (3) to define discrete functions for j < 0
or j ≥ N :

U−j = UN−j , UN−1+j = Uj−1 for j > 0.

The advection term in equation (1) depends on the variable velocity

a(x, t) := − χ

(1 + αv)2

∂v

∂x
,

therefore the maximum principle is not valid for the respective transport equation. But
problem (1) still has non-negative solutions, and this property can be preserved on the
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discrete level by applying proper upwinding approximations. The discrete spatial approx-
imation of the velocity is computed by

aj+ 1
2
(t) = − χ

(1 + α(Vj + Vj+1)/2)2
∂xVj .

In the following we consider the upwind-based discrete fluxes [4, 22]:

FT

(
U, a, j +

1

2

)
= aj+1/2

[
Uj + ψ(θj)

(
Uj+1 − Uj

)]
, aj+1/2 ≤ 0,

FT

(
U, a, j +

1

2

)
= aj+1/2

[
Uj+1 + ψ

(
1

θj+1

)(
Uj − Uj+1

)]
, aj+1/2 > 0,

with the Koren limiter function

ψ(θ) = max

(
0,min

(
1,

1

3
+

1

6
θ, θ

))
.

The limiter ψ depends on the smoothness monitor function

θj =
Uj − Uj−1

Uj+1 − Uj
.

For ψ = 0 we get the standard first-order upwind flux

FTUW

(
U, a, j +

1

2

)
= max

(
aj+1/2, 0

)
Uj+1 + min

(
aj+1/2, 0

)
Uj .

Let us denote the discrete advection operator as

AT (U, V, j) =
1

h

(
FT

(
U, a, j +

1

2

)
− FT

(
U, a, j − 1

2

))
.

Then we obtain a nonlinear ODE system for the evaluation of the approximate semi-
discrete solutions

dUj
dt

= AT (U, V, j) +ADR1(U, j), xj ∈ ωh,

dVj
dt

= ADR2(V,U, j).

3.2 Operator splitting methods

In order to develop efficient solvers in time for the obtained large ODE systems we
apply the splitting techniques. They take into account the different nature of the dis-
crete operators defining the advectionAT (U, V, j) and the diffusion-reactionADR1(U, j),
ADR2(V,U, j) terms. The system resolving the semi-discrete advection process can be
solved very efficiently by using explicit solvers, while the diffusion-reaction semi-discrete
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system is stiff and it requires an implicit treatment. Also we are interested in preserving at
the discrete level the positivity and/or boundedness of the solution, if such properties hold
for the differential ODE system. The splitting method gives us a possibility to construct
robust and flexible parallel algorithms, when domain decomposition should be incorpo-
rated into numerical approximations.

First we consider the symmetrical splitting method (also known as the Strang splitting
[24]). Given approximations Unj , V nj at time tn, we compute solutions at tn+1 = tn + τ
by the following scheme:

dUj
dt

= AT
(
U, V n, j

)
, Uj

(
tn
)

= Unj , tn ≤ t ≤ tn+1/2 = tn +
τ

2
, (9)

dUj
dt

= ADR1(U, j), Uj
(
tn
)

= U
n+1/2
j , tn ≤ t ≤ tn+1, (10)

dUj
dt

= AT
(
U, V n, j

)
, Uj

(
tn+1/2

)
= Un+1

j , tn+1/2 ≤ t ≤ tn+1, (11)

dVj
dt

= ADR2(V,U, j), Vj
(
tn
)

= V nj , tn ≤ t ≤ tn+1. (12)

Here we split the given ODE system into two blocks with respect to Uj and Vj functions.

Lemma 1. Solutions of the splitting ODE problem (9)–(12) are non-negative if Unj ≥ 0
and V nj ≥ 0 for all xj ∈ ωh.

Proof. The proof for the advection subsystems follows from the construction of the dis-
crete fluxes by using the upwinding technique. The proof for the diffusion-reaction sub-
systems follows from the lemma in [23] that the solution of an initial value problem for
systems of ODEs

dY

dt
= F

(
t, Y (t)

)
, t ≥ 0, Y (0) = Y0

is non-negative if and only if for all t and any vector V ∈ Rm and all 1 ≤ i ≤ m

vi = 0, vj ≥ 0 for all j 6= i =⇒ fi(t, V ) ≥ 0.

It is easy to see that for the diffusion-reaction subsystems the diffusion parts of the
matrices are diagonally dominant and all off-diagonal entries are non-positive. For the
reaction parts the required estimates are also trivially satisfied.

Lemma 2. If 0 ≤ Unj ≤ C for all xj ∈ ωh, then a solution of the splitting ODE
problem (10) is also bounded Uj ≤ max(C, 1).

Proof. Here we use the fact that U = 1 is a stable attractor of the reaction function. Let
Uni = maxj U

n
j . Then it follows from the definition of ADR1(U, j) that in the worst case

dUi
dt

> 0 if C < 1,
dUi
dt

= 0 if C = 1,

and
dUi
dt

< 0 if C > 1.

The lemma is proved.
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3.3 Numerical integration of ODEs

There are many numerical integration methods for solution of non-stiff and stiff ODEs.
For detailed discussions of these schemes we refer the reader to [4, 22, 25–27]. Let ωτ be
a uniform time grid

ωτ =
{
tn: tn = nτ, n = 0, . . . ,M, Mτ = Tf

}
,

here τ is the time step. For simplicity this step size is taken constant.
In the following, we consider numerical approximations Unj , V nj to the exact solution

values u(xj , t
n), v(xj , t

n) at the grid points (xj , t
n) ∈ ωh × ωτ .

Remark 1. In [11], the explicit forward Euler scheme is used to solve problem (1). Since
no details are given in [11] on approximations of spatial derivatives, we use discrete
operators introduced in previous sections and write the explicit forward Euler scheme as:

Un+1
j − Unj

τ
= AT

(
Un, V n, j

)
+ADR1

(
Un, j

)
,

V n+1
j − V nj

τ
= ADR2

(
V n, Un, j

)
.

We note that this scheme can be written as a splitting algorithm:

U
n+1/2
j − Unj

τ
= AT

(
Un, V n, j

)
,

Un+1
j − Un+1/2

j

τ
= ADR1

(
Un, j

)
,

V n+1
j − V nj

τ
= ADR2

(
V n, Un, j

)
.

Thus the explicit Euler scheme can be considered as a special case of splitting algorithms.
Despite easy implementation and good parallel properties of explicit algorithms, the main
drawback of the explicit Euler method is that due to the conditional stability we must
restrict the integration step to τ ≤ Ch2 for stiff discrete diffusion-reaction subproblems.

The Rosenbrock and implicit Runge–Kutta methods are successfully applied for in-
tegration of a stiff part of the splitting semidiscrete-scheme, i.e. diffusion-reaction equa-
tions (10), (12), see [4, 22, 23].

Here we propose to use a linearized implicit backward Euler method for the approxi-
mation of the diffusion-reaction subproblems and the explicit forward Euler method for
solution of the advection subproblem. We have restricted to the first order methods due to
their robust stability. Note that our main goal is to investigate the influence of a possible
ill-posedness of the PDE system to the asymptotical behaviour of the solution.
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We discretize the semidiscrete problem (9)–(12) with the fully discrete scheme

U
n+1/3
j − Unj

0.5τ
= AT

(
Un, V n, j

)
, (13)

U
n+2/3
j − Un+1/3

j

τ
= D∂x̄∂xU

n+2/3
j + γrU

n+1/3
j

(
1− Un+2/3

j

)
, (14)

Un+1
j − Un+2/3

j

0.5τ
= AT

(
Un+2/3, V n, j

)
, (15)

V n+1
j − V nj

τ
= ADR2

(
V n+1, Un+1, j

)
. (16)

We apply two splittings of the advection term, because then we use only half of the
splitting step size for the explicit method. This doubles the stability and positivity domains
of the explicit method (see [23]).

Next we prove that statements of Lemma 1 and 2 hold also for solutions of the fully
discrete finite difference scheme (13)–(16).

Lemma 3. For a sufficiently small time step τ ≤ τ0 solutions of the finite difference
scheme (13)–(16) are non-negative if Unj ≥ 0 and V nj ≥ 0 for all xj ∈ ωh.

Proof. The proof for the advection problems (13) and (15) follows from the construction
of the discrete fluxes by using the upwinding technique and selection of a sufficiently
small time step τ ≤ τ0.

The proof for the diffusion-reaction problems (14) and (16) follows from the maxi-
mum principle [28]. For example, consider problem (14). We assume, that

U
n+2/3
i = min

0≤j<N
U
n+2/3
j .

We write the discrete equation (14) for Un+2/3
i in an explicit form(

1 + τγrU
n+1/3
i

)
U
n+2/3
i = (1 + τγr)U

n+1/3
i +

Dτ

h2

(
U
n+2/3
i+1 + U

n+2/3
i−1 − 2U

n+2/3
i

)
.

Since Un+1/3
i ≥ 0 and Un+2/3

i±1 ≥ Un+2/3
i we get that Un+2/3

i ≥ 0.

Lemma 4. If 0 ≤ U
n+1/3
j ≤ C for all xj ∈ ωh, then a solution of the finite difference

scheme (14) is also bounded

U
n+2/3
j ≤ max(C, 1) for all xj ∈ ωh.

Proof. The proof is based on the maximum principle and a special form of the discrete
reaction term. First, we consider the case C ≤ 1. Let Un+2/3

i = maxj U
n+2/3
j . Then it

follows from (14) that

(
1+τγrU

n+1/3
i

)
U
n+2/3
i ≤ (1+τγr)U

n+1/3
i =⇒ U

n+2/3
i ≤ (1 + τγr)U

n+1/3
i

1 + τγrU
n+1/3
i

≤ 1.
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Next we consider the case C > 1. Then we get that

U
n+2/3
i ≤ (1 + τγr)U

n+1/3
i

1 + τγrU
n+1/3
i

= 1 +
U
n+1/3
i − 1

1 + τγrU
n+1/3
i

< C.

The lemma is proved.

We note that a convergence analysis of linear splitting schemes is quite well-developed
for many classes of physical processes, see [4, 28]. For nonlinear problems such results
are proved only for some partial cases. We will deal with the convergence questions in
a separate paper.

4 Numerical experiments

In this section, we present results of numerical experiments in order to verify our theore-
tical investigations.

4.1 Convergence analysis

The first goal is to investigate the convergence of the finite difference discretizations
of the PDE model (described in the previous section) in the case when dynamics of
solutions leads to formation of complicated spatial-temporal patterns. The development of
the bacterial population was simulated for the following values of the model parameters
(see [11]):

D = 0.1, χ = 9.2, r = 1, α = 0.7, β = 1.4, γ = 625, p = 2. (17)

First, we consider the MOL type discrete scheme (13)–(16), when the space grid step
has been fixed to h = 0.005, and computations has been performed with different time
steps τ = 1·10−6, 5·10−7, 2.5·10−7. A simple initial condition u0(x) = 1+0.2 sin(4πx),
x ∈ [0, 1] is used in computations. Fig. 3(a) shows the snapshots of function Uj(tn) at
time Tf = 0.6.

As can be seen, the discrete solutions do not converge when the discretization tempo-
ral step τ is decreased.

A similar behaviour of numerical approximations is also observed for the fully dis-
crete scheme (13)–(16). Fig. 3(b) shows the results, when the spatial and temporal grid
steps are connected by the relation τ = 5 · 10−5h and h = 0.01, 0.005, 0.0025.

In order to prove that such convergence behaviour of discrete solutions depends on
dynamical instability of the mathematical model (1) and more exactly it is a consequence
of negative diffusion driven instability due to chemotaxis process, we consider the same
problem (1) but for a short time interval t ∈ (0, Tf ]. During this time the diffusion
coefficient D still dominates the chemotaxis perturbations and the mathematical model
defines a well-posed problem. Dynamics in time of the maximal advection velocity vmax

is presented in Fig. 4(a), thus we can take Tf = 0.125.
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266 R. Čiegis, A. Bugajev

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

2

2.5

tau = 1x10(-6)

tau = 0.5x10(-6)

tau = 0.25x10(-6)

(a)

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

2 1

2

3

(b)

Fig. 3. Snapshots of Uj(t
n) as function of space (horizontal axis) at time Tf = 0.6:

(a) solution of MOL scheme for fixed space step h = 0.005 and different time steps τ =
1·10−6 (black), τ = 0.5·10−6 (red), τ = 0.25·10−6 (green); (b) solutions of fully discrete
scheme for τ = 5 · 10−5h and different space grid steps h = 0.01 (black), h = 0.005
(red), h = 0.0025 (green). In both cases the discrete solutions do not converge when the

discretization steps h and τ are decreased. (Online version in colour.)
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Fig. 4. Simulations of (13)–(16) for a short time interval: (a) dynamics of the maximal
advection velocity vmax in time (horizontal axis); (b) snapshots of Uj(t

n) as function of
space (horizontal axis) at Tf = 0.125 for fixed space step h = 0.005 and different time
steps τ = 1 · 10−6 (black), τ = 0.5 · 10−6 (red), τ = 0.25 · 10−6 (green). The discrete
solutions converge as expected according to the standard error estimates. (Online version

in colour.)

Fig. 4(b) shows the snapshots of function Uj(tn) at time Tf = 0.125. Computations
are done with h = 0.005 and different values of time step. The discrete solutions converge
as expected according to the standard error estimates.

Next we have investigated a sensitivity of the numerical solution with respect the
initial conditions computed at some time moment, when the solution have reached a phase
of pattern formation. The main goal is to determine a length of time interval for which
the discrete solution still remembers the influence of initial conditions. To address this,
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we have computed a solution of (13)–(16) till t = 1.5 with H = 1/4000 and used it as
initial conditions for the following computations. The error is defined as the difference of
two solutions Uh, UH computed with space steps h and H respectively:

Zh(T ) =
∥∥Uh(xj , T )− UH(xj , T )

∥∥
∞.

Table 1 presents the dynamics of errors Zh(T ) for different final times T and temporal
and space mesh steps.

Table 1. Sensitivity and convergence analysis of the discrete solution with respect to the
initial condition. Errors of the solution of (13)–(16) are presented for different temporal and
space mesh steps at T = 1.52, 1.54, 1.58, 1.65. Discrete solution of (13)–(16) at t = 1.5

with h = 1/4000 is used as the initial condition.

T = 1.52 T = 1.54 T = 1.58 T = 1.65

J = 250 τ = 2 · 10−6 0.423 1.920 2.398 2.585
J = 500 τ = 1 · 10−6 0.092 0.340 1.159 2.942
J = 1000 τ = 5 · 10−7 0.030 0.083 0.324 2.146
J = 2000 τ = 2.5 · 10−7 0.008 0.019 0.108 1.687

The obtained results indicate that the proposed finite difference scheme is robust and
accurate. Till time moment T = 1.58 the discrete solution converges when temporal and
space mesh steps are reduced, the convergence order coincides with theoretical estimates.

We note that in [5] the numerical stability for various solution classes was investigated
by considering the impact of a small perturbation applied at t = Tp. The subsequent
difference between perturbed and unperturbed solutions was tracked and analyzed. The
numerical Lyaponov exponent was used to estimate the stability of the solution.

4.2 Formation of complex patterns

In order to study the dependence to initial conditions of pattern formation we have sim-
ulated the model (1)–(3) with values of parameters (17). It is expected to get spatio-
temporal irregular solutions and according to Aida et al. [6] the qualitative form of spatio-
temporal patterns should not depend on specific initial conditions (see also [7]). Fig. 5
plots typical results for two types of initial conditions:

u(x, 0) = 1 + 0.2 sin(2πx) and u(x, 0) = 1 + 0.2 sin(4πx).

The space and time dynamics of cell density is presented.
We see that a similar qualitative pattern formation is observed for different initial

conditions.
In order to test the regularity of the solution, the corresponding phase plane trajectory

(U(x, t), V (x, t) at x = L/2 is computed and plotted in Fig. 6 for initial condition
u(x, 0) = 1 + 0.2 sin(2πx). It has a typical strange attractor appearance.

Finally, we have added the regularization term into the first equation of system (1).
The simulations show that if the regularization parameter α is such, that the perturbed
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268 R. Čiegis, A. Bugajev

problem starts to be well-posed, the pattern formation disappears and the cell density
converges to a homogeneous stable stationary state.
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Fig. 5. Simulation of (1)–(3) with parameters (17). Space (horizontal axis) – time (vertical
axis) cell density (u) for different initial conditions: (a) u(x, 0) = 1 + 0.2 sin(2πx);
(b) u(x, 0) = 1 + 0.2 sin(4πx). The same qualitative pattern formation is observed in

both cases.
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Fig. 6. Investigation of the solution class observed in (1)–(3) with parameters (17). The
time trajectory in the (U(x, t), V (x, t)) phase plane at x = L/2. It has a strange attractor

appearance.

5 Conclusions

In this paper we have studied one-dimensional diffusion-chemotaxis-reaction mathemat-
ical model and have shown that chemotaxis-driven instability can be connected to the
ill-posed problem defined by the backward in time diffusion process.

By using the well-established techniques the mathematical model is approximated
by the discrete computational model. It is proved that the discrete solution inherits main
properties of the solution of the differential mathematical model. Results of numerical
experiments show that for such problems, where chemotaxis-driven instability defines the
dynamics of a solution, the classical convergence property of numerical algorithms is not
applicable for long time intervals. We propose to make the classical convergence analysis
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in short time intervals, then the accuracy of the discrete schemes can be evaluated by the
Runge rule.

Instead of pointwise and similar convergence metrics qualitative criteria or averaged
statistical characteristics can be used, as in the discrete element method.

The one-dimensional model can be too simple in order to obtain a satisfactory agree-
ment with pattern formation seen in experiments. Thus 2D and 3D generalizations of the
given mathematical model should be investigated. Construction of robust and efficient
parallel algorithms can be done by using domain decomposition and splitting in space
methods [29].
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