
Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 3, 255–269 255

On a boundary value problem to third order PDE
with multiple characteristics

Yusufjon P. Apakova, Stasys Rutkauskasb,c

aNamangan Engineering Pedagogical Institute
Duslik str. 12, 160103, Namangan, Uzbekistan
apakov.1956@mail.ru
bInstitute of Mathematics and Informatics of Vilnius University
Akademijos str. 4, LT-08663 Vilnius, Lithuania
cVilnius Pedagogical University
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Abstract. In the paper the second boundary value problem in a rectangular domain to equation
uxxx − uyy = f(x, y) with the multiple characteristics is considered. The considered equation is
closely related with nonlinear equation uxxx + uyy − ν

y
uy = uxuxx, which describes transonic

flow of a gas around a revolution bodies. Using the fundamental solutions of corresponding homo-
geneous equation the Green function of analyzed problem is composed and thereby this problem is
solved.

Keywords: PDE’s of odd order, fundamental solutions, Green function and boundary value
problems.

1 Introduction

First investigations of the third order differential equation

uxxx − uyy = f(x, y) (1)

which possesses the multiple characteristics, are published in [1–3]. After a while the
works [4,5], in which various boundary value problems are studded using potential theory,
appear.

Let us observe, that equation (1) is conjugated to differential equation

uxxx + uyy = F (x, y)

that is related with the linear part of equation

uxxx + uyy −
ν

y
uy = uxuxx
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describing transonic flow of a gas. Particularly, if ν = 0, this equation describes the
plane-parallel flow of a gas (see [6, 7]).

In the theory of boundary value problems to equation (1) the fundamental solutions of
homogeneous equation

uxxx − uyy = 0

are significant. Such solutions U(x, y; ξ, η) and V (x, y; ξ, η) are composed in [8]. Here
is shown that they can be expressed in the form

U(x, y; ξ, η) = |y − η| 13 f(t), −∞ < t <∞,

V (x, y; ξ, η) = |y − η| 13ϕ(t), t < 0,
(2)

where

f(t) =
2 3
√

2√
3π
tΨ

(
1

6
,

4

3
; τ

)
, ϕ(t) =

36Γ( 1
3 )

√
3π

tΦ

(
1

6
,

4

3
; τ

)
, τ =

4

27
t3, t =

x− ξ
|y − η| 23

,

and both Ψ(a, b;x), Φ(a, b;x) are degenerate hypergeometric functions (see [9]), Γ is
Gamma function. Taking in account the properties of these functions the following esti-
mates for fundamental solution U(x, y; ξ, η) are obtained:∣∣∣∣ ∂h+kU∂xhdyk

∣∣∣∣ 6 Ckh|y − η|
1−(−1)k

2 |x− ξ|− 1
2 [2h+3k−1+ 3

2 (1−(−1)
k)], if

∣∣∣∣ x− ξ
|y − η| 23

∣∣∣∣→∞,
where Ckh are constants, k, h = 0, 1, 2, . . . . (There hold analogously estimates for
V (x, y; ξ, η) if (x− ξ)|y − η|− 2

3 → −∞.)
In [10] there are considered some boundary value problems to equation (1) in the

rectangular domain D = {(x, y): 0 < x < p, 0 < y < l}, p > 0, l > 0. Here the
solutions of the considered problems are composed by Fourier method under assumption
that boundary value conditions on y = 0 and y = l are homogeneous.

We shell solve in this paper the second boundary value problem to equation (1) in a
rectangular domain using the Green function method.

2 Statement of the problem

Definition 1. We will say that solution u(x, y) of equation (1) is regular in domain D =
{(x, y): 0 < x < p, 0 < y < l}, if it satisfies (1) in D and is from the class C3,2

x,y(D) ∩
C1,1
x,y(D).

Let us consider the following boundary value problem.

Problem F2. To find the regular in domain solution u(x, y) of equation (1) satisfying the
boundary value conditions

uy(x, 0) = ϕ1(x), uy(x, l) = ϕ2(x), (3)
u(0, y) = ψ1(y), u(p, y) = ψ2(y), ux(p, y) = ψ3(y), (4)

www.mii.lt/NA



On a boundary value problem to third order PDE with multiple characteristics 257

where

ϕi(x) ∈ C[0, p], i = 1, 2, ψj(y) ∈ C3[0, l], j = 1, 2,

ψ3(y) ∈ C2[0, l], f(x, y) ∈ C0,2
x,y(D),

and the following compatibility conditions are fulfilled:

ϕ1(0) = ψ′1(0), ϕ1(p) = ψ′2(0), ϕ′1(p) = ψ3(0), ϕ2(0) = ψ′1(l),
(5)

ϕ2(p) = ψ′2(l), ϕ′2(p) = ψ3(l), f ′y(x, 0) = f ′y(x, l) = 0.

We shall note that, in work [11] analogical problem investigated in endless band.

3 Uniqueness of the solution

Theorem 1. There exists no more than one solution of Problem F2.

Proof. Propose that Problem F2 has two solutions u1(x, y) and u2(x, y). Then u(x, y) =
u1(x, y)−u2(x, y) satisfies the homogeneous equation uxxx−uyy = 0 and corresponding
homogeneous boundary value conditions. We shell prove that u(x, y) ≡ 0 in D in such a
case.

Let us consider the identity

∂

∂x

(
uuxx −

1

2
u2x

)
− ∂

∂y
(uuy) + u2y = 0.

Integrating it over domain D and taking in account the homogeneity of boundary value
conditions we obtain that

1

2

l∫
0

u2x(0, y) dy +

∫∫
D

u2y(x, y) dxdy = 0.

Hence, uy(x, y) = 0, i.e. u(x, y) = φ(x), where φ(x) is arbitrary function. Since
u(x, 0) = 0, we get φ(x) = 0 because of continuity of function u(x, y). Therefore,
u(x, y) ≡ 0 in D.

4 The existence of the solution

Let us consider the adjoint differential operators

L ≡ ∂3

∂ξ3
− ∂2

∂η2
, L∗ ≡ − ∂3

∂ξ3
− ∂2

∂η2
.

Let ϕ,ψ be smooth enough functions. It is easy to check that the identity

ϕL[ψ]− ψL∗[ϕ] ≡ ∂

∂ξ
(ϕψξξ − ϕξψξ + ϕξξψ)− ∂

∂η
(ϕψη − ϕηψ)
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holds. Integrating it over domain D we get the equality∫∫
D

[
ϕL[ψ]− ψL∗[ϕ]

]
dξ dη

=

∫∫
D

∂

∂ξ
(ϕψξξ − ϕξψξ + ϕξξψ) dξ dη −

∫∫
D

∂

∂η
(ϕψη − ϕηψ) dξ dη. (6)

Let us choose the fundamental solution U(x, y; ξ, η), which satisfies with respect to (ξ, η)
the equation

L∗[U ] ≡ −Uξξξ − Uηη = 0 if (x, y) 6= (ξ, η),

instead of function ϕ, and any regular solution u(ξ, η) of equation (1) instead of function
ψ. Since Uη(x, y; ξ, η) has a singularity at the line y = η, we introduce the domains

Dε
1 =

{
(ξ, η): 0 < ξ < p, 0 < η < y − ε

}
,

Dε
2 =

{
(ξ, η): 0 < ξ < p, y + ε < η < l

}
such that D = limε→0(Dε

1 ∪Dε
2). Then we obtain from equality (6) that∫∫

D

U(x, y; ξ, η)f(ξ, η) dξ dη

= lim
ε→0+

p∫
0

y−ε∫
0

∂

∂ξ
(Uuξξ − Uξuξ + Uξξu) dξ dη

+ lim
ε→0+

p∫
0

l∫
y+ε

∂

∂ξ
(Uuξξ − Uξuξ + Uξξu) dξ dη

− lim
ε→0+

p∫
0

y−ε∫
0

∂

∂η
(Uuη − Uηu) dξ dη

− lim
ε→0+

p∫
0

l∫
y+ε

∂

∂η
(Uuη − Uηu) dξ dη

= lim
ε→0+

y−ε∫
0

(Uuξξ − Uξuξ + Uξξu)|ξ=pξ=0 dη

+ lim
ε→0+

l∫
y+ε

(Uuξξ − Uξuξ + Uξξu)|ξ=pξ=0 dη
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− lim
ε→0+

p∫
0

(Uuη − Uηu)|η=y−εη=0 dξ − lim
ε→0+

p∫
0

(Uuη − Uηu)|η=lη=y+ε dξ

=

y∫
0

(Uuξξ − Uξuξ + Uξξu)|ξ=pξ=0 dη +

l∫
y

(Uuξξ − Uξuξ + Uξξu)|ξ=pξ=0 dη

− lim
ε→0+

p∫
0

[
U(x, y; ξ, y − ε)uη(ξ, y − ε)− U(x, y; ξ, 0)uη(ξ, 0)

]
dξ

+ lim
ε→0+

p∫
0

[
Uη(x, y; ξ, y − ε)u(ξ, y − ε)− Uη(x, y; ξ, 0)u(ξ, 0)

]
dξ

− lim
ε→0+

p∫
0

[
U(x, y; ξ, l)uη(ξ, l)− U(x, y; ξ, y + ε)uη(ξ, y + ε)

]
dξ

+ lim
ε→0+

p∫
0

[
Uη(x, y; ξ, l)u(ξ, l)− Uη(x, y; ξ, y + ε)u(ξ, y + ε)

]
dξ

=

l∫
0

(Uuξξ − Uξuξ + Uξξu)|ξ=pξ=0 dη

−
p∫

0

[
U(x, y; ξ, l)uη(ξ, l)− U(x, y; ξ, 0)uη(ξ, 0)

]
dξ

+

p∫
0

[
Uη(x, y; ξ, l)u(ξ, l)− Uη(x, y; ξ, 0)u(ξ, 0)

]
dξ

+ lim
ε→0+

p∫
0

Uη(x, y; ξ, y − ε)u(ξ, y − ε) dξ

− lim
ε→0+

p∫
0

Uη(x, y; ξ, y + ε)u(ξ, y + ε) dξ.

So we get the relation∫∫
D

U(x, y; ξ, η)f(ξ, η) dξ dη

=

l∫
0

[
Uuξξ − Uξuξ + Uξξu

]∣∣ξ=p
ξ=0

dη −
p∫

0

U(x, y; ξ, η)uη(ξ, η)|η=lη=0 dξ
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+

p∫
0

Uη(x, y; ξ, η)u(ξ, η)|η=lη=0 dξ + lim
ε→0+

p∫
0

Uη(x, y; ξ, y − ε)u(ξ, y − ε) dξ

− lim
ε→0+

p∫
0

Uη(x, y; ξ, y + ε)u(ξ, y + ε) dξ (7)

There holds following

Lemma. Let ϕ be any function from C[0, p]. Then relation

lim
x→x0
η→y

p∫
0

Uη(x, y; ξ, η)ϕ(ξ) dξ = −ϕ(x0) sgn(y − η)

holds with any x0 ∈ (0, p).

Proof. Assume that y > η. Due to the continuity of ϕ(x) at the point x0, there exists
δ = δ(ε) such that |ϕ(x)− ϕ(x0)| < ε, if only |x− x0| < δ. Using the relation (see [8])

Uη = −U∗ sgn(y − η),

where

U∗(x, y; ξ, η) =
1

|y − η| 23
f∗
(

x− ξ
|y − η| 23

)
, f∗(t) =

t

3γ
Ψ

(
7

6
,

4

3
;

4

27
t3
)
, γ =

3
√

3π

2
1
3

one can rewrite the integral in the left-hand side of (7) as follows:
p∫

0

Uη(x, y; ξ, η)ϕ(ξ) dξ

= −
p∫

0

U∗(x, y; ξ, η)ϕ(ξ) dξ = −
p∫

0

1

|y − η| 23
f∗
(

x− ξ
|y − η| 23

)
ϕ(ξ) dξ

=

(
−

x1∫
0

−
x2∫
x1

−
p∫

x2

)
1

(y − η)
2
3

f∗
(

x− ξ
(y − η)

2
3

)
ϕ(ξ) dξ

= I1 + I2 + I3.

(Here x1 = x0 − δ ,x2 = x0 + δ.)
The main term I2 of obtained sum can be rewritten as

− ϕ(x0)

x2∫
x1

1

(y − η)
2
3

f∗
(

x− ξ
(y − η)

2
3

)
dξ

−
x2∫
x1

1

(y − η)
2
3

f∗
(

x− ξ
(y − η)

2
3

)[
ϕ(ξ)− ϕ(x0)

]
dξ

= I21 + I22.
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Let us calculate the limit of integral I21, as x → x0, η → y − 0. Introduce to this the
variable

t =
x− ξ

(y − η)
2
3

.

Then ξ = x− t(y − η)
2
3 dξ = −(y − η)

2
3 dt, obviously, and we obtain that

I21 = −ϕ(x0)

x−x1
(y−η)2/3∫
x−x2

(y−η)2/3

f∗(t) dt.

If |x− x0| < δ, then upper limit of this integral is positive and lower limit is negative.
Besides, the upper limit tends to +∞ and the lower limit tends to −∞, as η → y − 0.
Therefore, taking in account the equality [8]

∞∫
−∞

f∗(t) dt = 1

we get that
lim

η→y−0
x→x0

I21 = −ϕ(x0).

It remains to show that the rest integrals I21, I1, I3 tend to zero, as x→ x0, η → y−0.
Let us consider integral I22. Since

|I22| 6
x2∫
x1

∣∣∣∣ 1

(y − η)
2
3

f∗
(

x− ξ
(y − η)

2
3

)∣∣∣∣∣∣ϕ(ξ)− ϕ(x0)
∣∣dξ

and |ξ − x0| < δ, we obtain that

|I22| 6 ε

x−x1
(y−η)2/3∫
x−x2

(y−η)2/3

∣∣f∗(t)∣∣dt.
Then the estimate |f∗(t)| < C|t|− 5

2 (see [8]) yields the equality

lim
η→y−0
x→x0

I22 = 0.

Let N be a constant such that |ϕ(x)| 6 N ∀x ∈ [0, l]. Then

|I1| <

∣∣∣∣∣
x1∫
0

1

(y − η)
2
3

f∗
(

x− ξ
(y − η)

2
3

)
ϕ(ξ) dξ

∣∣∣∣∣ < N

x−x1
(y−η)2/3∫
x

(y−η)2/3

∣∣f∗(t)∣∣dt→ 0
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as x → x0, η → y − 0, because both upper and lower limits tend to +∞, as x → x0,
η → y − 0.

Analogously

|I3| <

∣∣∣∣∣
p∫

x2

1

(y − η)
2
3

f∗
(

x− ξ
(y − η)

2
3

)
ϕ(ξ) dξ

∣∣∣∣∣ < N

x−p
(y−η)2/3∫
x−x2

(y−η)2/3

∣∣f∗(t)∣∣ dt→ 0,

as x→ x0, η → y − 0.
Thus, lemma is proved in the case y > η. In the opposite case the proof of the relation

lim
x→x0
η→y

b∫
a

Uη(x, y; ξ, η)ϕ(ξ) dξ = ϕ(x0).

is analogously.

Further, using the Lemma we obtain from (7) that∫∫
D

U(x, y; ξ, η)f(ξ, η) dξ dη

=

l∫
0

(Uuξξ − Uξuξ + Uξξu)|ξ=pξ=0 dη −
p∫

0

U(x, y; ξ, η)uη(ξ, η)|η=lη=0 dξ

+

p∫
0

Uη(x, y; ξ, η)u(ξ, η)|η=lη=0 dξ − 2u(x, y).

Thus,

2u(x, y) =

l∫
0

(Uuξξ − Uξuξ + Uξξu)|ξ=pξ=0 dη −
p∫

0

(Uuη − Uηu)|η=lη=0 dξ

−
∫∫
D

U(x, y; ξ, η)f(ξ, η) dξ dη (8)

Let u(x, y) be any regular solution of equation (1) and W (x, y; ξ, η) be any regular
solution of the adjoint equation. Then putting ϕ = W (x, y; ξ, η), ψ = u(ξ, η) into
(6) we obtain that

0 =

l∫
0

(Wuξξ −Wξuξ +Wξξu)|ξ=pξ=0 dη −
p∫

0

(Wuη −Wηu)|η=lη=0 dξ

−
∫∫
D

W (x, y; ξ, η)f(ξ, η) dξ dη. (9)
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Both (8) and (9) yield the important relation

2u(x, y) =

l∫
0

(Guξξ −Gξuξ +Gξξu)|ξ=pξ=0 dη −
p∫

0

(Guη −Gηu)|η=lη=0 dξ

−
∫∫
D

G(x, y; ξ, η)f(ξ, η) dξ dη, (10)

where
G(x, y; ξ, η) = U(x, y; ξ, η)−W (x, y; ξ, η).

Definition 2. We will say thatG(x, y; ξ, η) is the Green function of Problem F2 in domain
D if it satisfies the following conditions:

L[G] = 0,

Gy(x, 0; ξ, η) = Gy(x, l; ξ, η) = 0,

G(0, y; ξ, η) = G(p, y; ξ, η) = Gx(p, y; ξ, η) = 0

(11)

with respect to variables (x, y);
L∗[G] = 0,

Gη(x, y; ξ, 0) = Gη(x, y; ξ, l) = 0,

G(x, y; 0, η) = G(x, y; p, η) = Gξ(x, y; 0, η) = 0

(12)

with respect to variables (ξ, η).

In order to compose the mentioned above Green function we solve the following
subsidiary problem.

Problem F0. To find a regular in domain D solution u(x, y) of equation (1) satisfying
conditions

uy(x, 0) = 0, uy(x, l) = 0, 0 6 x 6 p, (13)
u(0, y) = u(p, y) = ux(p, y) = 0, 0 6 y 6 l. (14)

We seek for the solution of this problem of the shape

u(x, y) =

∞∑
k=1

Xk(x) cos
kπ

l
y, (15)

where Xk(x) are unknown functions.
Let us express the function f(x, y) into Fourier series

f(x, y) =

∞∑
k=0

fk(x) cos
kπ

l
y, (16)
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where

fk(x) =
2

l

l∫
0

f(x, y) cos
kπ

l
y dy

Substituting both (15) and (16) into (1) we get that

∞∑
k=0

[
X ′′′k (x) + λ3kXk(x)− fk(x)

]
cos

kπ

l
y = 0.

Therefore, we obtain the boundary value problem{
L[Xk] := X ′′′k (x) + λ3kXk(x) = fk(x),

Xk(0) = Xk(p) = X ′k(p) = 0
(17)

with respect to unknown function Xk(x); here λ3k = (kπl)2.
We shall solve problem (17) by Green function method.

Definition 3. We will say that Gk(x, ξ) is the Green function of problem (17), if it
satisfies the following conditions:

(i) both Gk(x, ξ) and ∂Gk(x,ξ)
∂x are continuous on the square 0 6 x 6 p, 0 6 ξ 6 p;

(ii) ∂2Gk(x,ξ)
∂x2 is discontinuous at the line x = ξ and

∂2Gk(x, ξ)

∂x2

∣∣∣∣
x=ξ+0

− ∂2Gk(x, ξ)

∂x2

∣∣∣∣
x=ξ−0

= 1;

(iii) Gk(x, ξ) satisfies with respect to x the equation

L[Gk] :=
∂3Gk
∂ x3

+ λ3kGk = 0

in both intervals 0 6 x < ξ and ξ < x 6 p for ∀ξ ∈ (0, p);

(iv) It satisfies following boundary value conditions

Gk(0, ξ) = Gk(p, ξ) = Gkx(p, ξ) = 0

for ∀ξ ∈ [0, p].

www.mii.lt/NA



On a boundary value problem to third order PDE with multiple characteristics 265

It is easy to verify that Green function Gk(0, ξ) of problem (17) is of the shape:

Gk(x, ξ)

=
1

∆̄

{
2e−λk(

3
2p+x−ξ) sin

(√
3

2
λkp+

π

6

)
− 2e−

λk
2 (2x+ξ) sin

(√
3

2
λkξ +

π

6

)
− 2e−λk(

3
2p−ξ−

x
2 ) sin

[√
3

2
λk(p− x) +

π

6

]
+ 2e−

λk
2 (ξ−x) sin

[√
3

2
λk(ξ − x) +

π

6

]
+ 4e−

λk
2 (3p+ξ−x) sin

[√
3

2
λk(p− ξ)

]
sin

√
3

2
λkx

}
, 0 6 x 6 ξ,

Gk(x, ξ)

=
1

∆̄

{
−2e−

λk
2 (2x+ξ) sin

(√
3

2
λkξ +

π

6

)
− 2e−λk(

3
2p−ξ−

x
2 ) sin

[√
3

2
λk(p− x) +

π

6

]
+ e−λk(x−ξ)

+ 4e−
λk
2 (3p+ξ−x) sin

[√
3

2
λk(p− x) +

π

6

]
× sin

(√
3

2
λkξ +

π

6

)}
, ξ 6 x 6 p,

(18)

where

∆̄ = 3λ2k

(
1− 2e−

3
2λkp sin

(√
3

2
λkp+

π

6

))
.

Hence, the solution of problem (17) is of the shape

Xk(x) =

p∫
0

Gk(x, ξ)fk(ξ) dξ. (19)

Then taking in account (19) we get according to formula (15) the solution u(x, y) of
Problem F0

u(x, y) =

∞∑
k=1

( p∫
0

Gk(x, ξ)fk(ξ) dξ

)
cos

πk

l
y. (20)

It stands to reason that we are in need of the proof of the uniform convergence in domain
D = {(x, y): 0 < x < p, 0 < y < l} of the series in right-hand side of (20) together with
its partial derivatives of needful order.

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 3, 255–269



266 Yu.P. Apakov, S. Rutkauskas

Let us note to this end that∣∣∣∣∣
∞∑
k=1

( p∫
0

Gk(x, ξ)fk(ξ) dξ

)
cos

πk

l
y

∣∣∣∣∣ 6
∞∑
k=1

p∫
0

∣∣Gk(x, ξ)
∣∣∣∣fk(ξ)

∣∣dξ. (21)

Note that well known estimate∣∣fk(ξ)
∣∣ 6 M1

k2
, M1 = const > 0,

holds for ∀ξ ∈ [0, p] because of the assumed smoothness of function f(x, y). Further, it
follows from (19) that

∣∣Gk(x, ξ)
∣∣ 6
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3

e−
3
2λkp

λ2k
+

2

3

e−
1
2λkδ1

λ2k
, 0 6 x < ξ, 0 < δ1 < ξ − x,

8

3

e−
3
2λkp

λ2k
+

1

3

e−
1
2λkδ2

λ2k
, ξ < x 6 l, 0 < δ2 < x− ξ,

(22)

or ∣∣Gk(x, ξ)
∣∣ 6 10

3

e−
3
2λkp

λ2k
+

2

3

e−
1
2λkδ

λ2k
6M2k

− 4
3 ,

where M2 is some constant independent of k. That jointly with (22) yields the estimate

p∫
0

∣∣Gk(x, ξ)
∣∣∣∣fk(ξ)

∣∣ dξ 6 pM1M2k
− 10

3 .

Thus, the series in right-hand side of (20) converges uniformly inD to u(x, y) because
of the last estimate, and equality (20) can be rewritten as follows:

u(x, y) =

p∫
0

( ∞∑
k=1

Gk(x, ξ)fk(ξ) cos
πk

l
y

)
dξ. (23)

We shall prove that the expression (23) of function u(x, y) can be thrice differentiable
with respect to x, i.e.

∂3

∂x3
u(x, y) =

p∫
0

( ∞∑
k=1

∂3

∂x3
Gk(x, ξ)fk(ξ) cos

πky

l

)
dξ. (24)

In this order it is enough to show that series

∞∑
k=1

∂3

∂x3
Gk(x, ξ)fk(ξ) cos

πky

l
(25)
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converges uniformly in domain D. According to equality ∂3Gk
∂x3 + λ3kGk = 0 we obtain

similarly as above that∣∣∣∣ ∂3∂x3Gk(x, ξ)fk(ξ) cos
πky

l

∣∣∣∣ 6 ∣∣∣∣ ∂3∂x3Gk(x, ξ)

∣∣∣∣∣∣fk(ξ)
∣∣ =

∣∣λ3kGk(x, ξ)
∣∣∣∣fk(ξ)

∣∣
6 λ3kM1M2k

− 10
3 =

(
π

l

)2

M1M2k
− 4

3 .

That yields the uniform convergence of series (25), evidently. Therefore, derivative
∂3

∂x3u(x, y) is continuous in D and equality (24) holds.
The validity of the equality

∂2

∂y2
u(x, y) =

p∫
0

( ∞∑
k=1

(
πky

l

)2

Gk(x, ξ)fk(ξ) cos
πky

l

)
dξ

formally obtained from (23) follows because of estimate(
πky

l

)2∣∣Gk(x, ξ)
∣∣∣∣fk(ξ)

∣∣ 6 (π
l

)2

M1M2k
− 4

3 , (x, ξ) ∈ D.

Hence, function u(x, y) defined by (23) is the solution of subsidiary Problem F0,
really. Putting in (23)

fn(ξ) =
2

l

l∫
0

f(ξ, η) cos
πk

l
η dη

(see (16)) we get that

u(x, y) =

p∫
0

∞∑
k=1

Gk(x, ξ) cos
πky

l
fk(ξ) dξ

=

p∫
0

l∫
0

f(ξ, η)
2

l
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k=1

Gk(x, ξ) cos
πk

l
η cos

πk

l
ydξ dη

=

p∫
0

l∫
0

G(x, ξ, y, η)f(ξ, η) dξ dη,

where

G(x, ξ, y, η) =
2

l

∞∑
k=1

Gk(x, ξ) cos
πk

l
η cos

πk

l
y. (26)

It is easily seen that functionG(x, ξ, y, η) satisfies conditions (11) and (12), i.e. it is Green
function of boundary value Problem F2 of equation (1). The convergence in D of series
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(26) and its needful order derivatives follows from the estimates of function Gk(x, ξ)
given above.

According to Definition 2 of Green function G(x, ξ, y, η) we obtain from (10) the
solution u(x, y) of considered Problem F2 of the shape

2u(x, y) =

l∫
0

Gξξ(x, y, p, η)ψ2(η) dη −
l∫

0

Gξξ(x, y, 0, η)ψ1(η) dη

−
l∫

0

Gξ(x, y, p, η)ψ3(η) dη +

p∫
0

G(x, y, ξ, 0)ϕ1(ξ) dξ

−
p∫

0

G(x, y, ξ, l)ϕ2(ξ) dξ −
∫∫
D

G(x, y, ξ, η)f(ξ, η) dξ dη. (27)

Hence, there holds

Theorem 2. Let ϕi(x) ∈ C[0, p], i = 1, 2, ψj(y) ∈ C3[0, l], j = 1, 2, ψ3(y) ∈ C2[0, l]
and f(x, y) ∈ C0,2

x,y(D), and let the following compatibility conditions (5) are fulfilled.
Then there exists a unique solution u(x, y) of Problem F2 which can be represent by
formula (27).
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