On a boundary value problem to third order PDE with multiple characteristics

Yusufjon P. Apakov ${ }^{\text {a }}$, Stasys Rutkauskas ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Namangan Engineering Pedagogical Institute
Duslik str. 12, 160103, Namangan, Uzbekistan apakov.1956@mail.ru
${ }^{\mathrm{b}}$ Institute of Mathematics and Informatics of Vilnius University Akademijos str. 4, LT-08663 Vilnius, Lithuania
${ }^{\text {c }}$ Vilnius Pedagogical University
Studentụ str. 39, LT-08106, Vilnius, Lithuania
stasys.rutkauskas@mii.vu.lt

Received: 10 March 2011 / Revised: 7 September 2011 / Published online: 19 September 2011
Abstract. In the paper the second boundary value problem in a rectangular domain to equation $u_{x x x}-u_{y y}=f(x, y)$ with the multiple characteristics is considered. The considered equation is closely related with nonlinear equation $u_{x x x}+u_{y y}-\frac{\nu}{y} u_{y}=u_{x} u_{x x}$, which describes transonic flow of a gas around a revolution bodies. Using the fundamental solutions of corresponding homogeneous equation the Green function of analyzed problem is composed and thereby this problem is solved.

Keywords: PDE's of odd order, fundamental solutions, Green function and boundary value problems.

1 Introduction

First investigations of the third order differential equation

$$
\begin{equation*}
u_{x x x}-u_{y y}=f(x, y) \tag{1}
\end{equation*}
$$

which possesses the multiple characteristics, are published in [1-3]. After a while the works [4,5], in which various boundary value problems are studded using potential theory, appear.

Let us observe, that equation (1) is conjugated to differential equation

$$
u_{x x x}+u_{y y}=F(x, y)
$$

that is related with the linear part of equation

$$
u_{x x x}+u_{y y}-\frac{\nu}{y} u_{y}=u_{x} u_{x x}
$$

describing transonic flow of a gas. Particularly, if $\nu=0$, this equation describes the plane-parallel flow of a gas (see [6, 7]).

In the theory of boundary value problems to equation (1) the fundamental solutions of homogeneous equation

$$
u_{x x x}-u_{y y}=0
$$

are significant. Such solutions $U(x, y ; \xi, \eta)$ and $V(x, y ; \xi, \eta)$ are composed in [8]. Here is shown that they can be expressed in the form

$$
\begin{array}{ll}
U(x, y ; \xi, \eta)=|y-\eta|^{\frac{1}{3}} f(t), & -\infty<t<\infty \\
V(x, y ; \xi, \eta)=|y-\eta|^{\frac{1}{3}} \varphi(t), & t<0 \tag{2}
\end{array}
$$

where
$f(t)=\frac{2 \sqrt[3]{2}}{\sqrt{3 \pi}} t \Psi\left(\frac{1}{6}, \frac{4}{3} ; \tau\right), \quad \varphi(t)=\frac{36 \Gamma\left(\frac{1}{3}\right)}{\sqrt{3} \pi} t \Phi\left(\frac{1}{6}, \frac{4}{3} ; \tau\right), \quad \tau=\frac{4}{27} t^{3}, \quad t=\frac{x-\xi}{|y-\eta|^{\frac{2}{3}}}$, and both $\Psi(a, b ; x), \Phi(a, b ; x)$ are degenerate hypergeometric functions (see [9]), Γ is Gamma function. Taking in account the properties of these functions the following estimates for fundamental solution $U(x, y ; \xi, \eta)$ are obtained:
$\left|\frac{\partial^{h+k} U}{\partial x^{h} d y^{k}}\right| \leqslant C_{k h}|y-\eta|^{\frac{1-(-1)^{k}}{2}}|x-\xi|^{-\frac{1}{2}\left[2 h+3 k-1+\frac{3}{2}\left(1-(-1)^{k}\right)\right]}, \quad$ if $\left|\frac{x-\xi}{|y-\eta|^{\frac{2}{3}}}\right| \rightarrow \infty$,
where $C_{k h}$ are constants, $k, h=0,1,2, \ldots$ (There hold analogously estimates for $V(x, y ; \xi, \eta)$ if $(x-\xi)|y-\eta|^{-\frac{2}{3}} \rightarrow-\infty$.)

In [10] there are considered some boundary value problems to equation (1) in the rectangular domain $D=\{(x, y): 0<x<p, 0<y<l\}, p>0, l>0$. Here the solutions of the considered problems are composed by Fourier method under assumption that boundary value conditions on $y=0$ and $y=l$ are homogeneous.

We shell solve in this paper the second boundary value problem to equation (1) in a rectangular domain using the Green function method.

2 Statement of the problem

Definition 1. We will say that solution $u(x, y)$ of equation (1) is regular in domain $D=$ $\{(x, y): 0<x<p, 0<y<l\}$, if it satisfies (1) in D and is from the class $C_{x, y}^{3,2}(D) \cap$ $C_{x, y}^{1,1}(\bar{D})$.

Let us consider the following boundary value problem.
Problem $\boldsymbol{F}_{\mathbf{2}}$. To find the regular in domain solution $u(x, y)$ of equation (1) satisfying the boundary value conditions

$$
\begin{align*}
& u_{y}(x, 0)=\varphi_{1}(x), \quad u_{y}(x, l)=\varphi_{2}(x) \tag{3}\\
& u(0, y)=\psi_{1}(y), \quad u(p, y)=\psi_{2}(y), \quad u_{x}(p, y)=\psi_{3}(y) \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
& \varphi_{i}(x) \in C[0, p], \quad i=1,2, \quad \psi_{j}(y) \in C^{3}[0, l], \quad j=1,2, \\
& \psi_{3}(y) \in C^{2}[0, l], \quad f(x, y) \in C_{x, y}^{0,2}(\bar{D})
\end{aligned}
$$

and the following compatibility conditions are fulfilled:

$$
\begin{align*}
& \varphi_{1}(0)=\psi_{1}^{\prime}(0), \quad \varphi_{1}(p)=\psi_{2}^{\prime}(0), \quad \varphi_{1}^{\prime}(p)=\psi_{3}(0), \quad \varphi_{2}(0)=\psi_{1}^{\prime}(l), \\
& \varphi_{2}(p)=\psi_{2}^{\prime}(l), \quad \varphi_{2}^{\prime}(p)=\psi_{3}(l), \quad f_{y}^{\prime}(x, 0)=f_{y}^{\prime}(x, l)=0 \tag{5}
\end{align*}
$$

We shall note that, in work [11] analogical problem investigated in endless band.

3 Uniqueness of the solution

Theorem 1. There exists no more than one solution of Problem F_{2}.
Proof. Propose that Problem F_{2} has two solutions $u_{1}(x, y)$ and $u_{2}(x, y)$. Then $u(x, y)=$ $u_{1}(x, y)-u_{2}(x, y)$ satisfies the homogeneous equation $u_{x x x}-u_{y y}=0$ and corresponding homogeneous boundary value conditions. We shell prove that $u(x, y) \equiv 0$ in D in such a case.

Let us consider the identity

$$
\frac{\partial}{\partial x}\left(u u_{x x}-\frac{1}{2} u_{x}^{2}\right)-\frac{\partial}{\partial y}\left(u u_{y}\right)+u_{y}^{2}=0 .
$$

Integrating it over domain D and taking in account the homogeneity of boundary value conditions we obtain that

$$
\frac{1}{2} \int_{0}^{l} u_{x}^{2}(0, y) \mathrm{d} y+\iint_{D} u_{y}^{2}(x, y) \mathrm{d} x \mathrm{~d} y=0 .
$$

Hence, $u_{y}(x, y)=0$, i.e. $u(x, y)=\phi(x)$, where $\phi(x)$ is arbitrary function. Since $u(x, 0)=0$, we get $\phi(x)=0$ because of continuity of function $u(x, y)$. Therefore, $u(x, y) \equiv 0$ in D.

4 The existence of the solution

Let us consider the adjoint differential operators

$$
L \equiv \frac{\partial^{3}}{\partial \xi^{3}}-\frac{\partial^{2}}{\partial \eta^{2}}, \quad L^{*} \equiv-\frac{\partial^{3}}{\partial \xi^{3}}-\frac{\partial^{2}}{\partial \eta^{2}} .
$$

Let φ, ψ be smooth enough functions. It is easy to check that the identity

$$
\varphi L[\psi]-\psi L^{*}[\varphi] \equiv \frac{\partial}{\partial \xi}\left(\varphi \psi_{\xi \xi}-\varphi_{\xi} \psi_{\xi}+\varphi_{\xi \xi} \psi\right)-\frac{\partial}{\partial \eta}\left(\varphi \psi_{\eta}-\varphi_{\eta} \psi\right)
$$

holds. Integrating it over domain D we get the equality

$$
\begin{align*}
& \iint_{D}\left[\varphi L[\psi]-\psi L^{*}[\varphi]\right] \mathrm{d} \xi \mathrm{~d} \eta \\
& \quad=\iint_{D} \frac{\partial}{\partial \xi}\left(\varphi \psi_{\xi \xi}-\varphi_{\xi} \psi_{\xi}+\varphi_{\xi \xi} \psi\right) \mathrm{d} \xi \mathrm{~d} \eta-\iint_{D} \frac{\partial}{\partial \eta}\left(\varphi \psi_{\eta}-\varphi_{\eta} \psi\right) \mathrm{d} \xi \mathrm{~d} \eta \tag{6}
\end{align*}
$$

Let us choose the fundamental solution $U(x, y ; \xi, \eta)$, which satisfies with respect to (ξ, η) the equation

$$
L^{*}[U] \equiv-U_{\xi \xi \xi}-U_{\eta \eta}=0 \quad \text { if }(x, y) \neq(\xi, \eta)
$$

instead of function φ, and any regular solution $u(\xi, \eta)$ of equation (1) instead of function ψ. Since $U_{\eta}(x, y ; \xi, \eta)$ has a singularity at the line $y=\eta$, we introduce the domains

$$
\begin{aligned}
& D_{1}^{\varepsilon}=\{(\xi, \eta): 0<\xi<p, 0<\eta<y-\varepsilon\} \\
& D_{2}^{\varepsilon}=\{(\xi, \eta): 0<\xi<p, y+\varepsilon<\eta<l\}
\end{aligned}
$$

such that $D=\lim _{\varepsilon \rightarrow 0}\left(D_{1}^{\varepsilon} \cup D_{2}^{\varepsilon}\right)$. Then we obtain from equality (6) that

$$
\begin{aligned}
& \iint_{D} U(x, y ; \xi, \eta) f(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta \\
& =\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p} \int_{0}^{y-\varepsilon} \frac{\partial}{\partial \xi}\left(U u_{\xi \xi}-U_{\xi} u_{\xi}+U_{\xi \xi} u\right) \mathrm{d} \xi \mathrm{~d} \eta \\
& \quad+\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p} \int_{y+\varepsilon}^{l} \frac{\partial}{\partial \xi}\left(U u_{\xi \xi}-U_{\xi} u_{\xi}+U_{\xi \xi} u\right) \mathrm{d} \xi \mathrm{~d} \eta \\
& \quad-\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p} \int_{0}^{y-\varepsilon} \frac{\partial}{\partial \eta}\left(U u_{\eta}-U_{\eta} u\right) \mathrm{d} \xi \mathrm{~d} \eta \\
& \quad-\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p} \int_{y+\varepsilon}^{l} \frac{\partial}{\partial \eta}\left(U u_{\eta}-U_{\eta} u\right) \mathrm{d} \xi \mathrm{~d} \eta \\
& =\left.\lim _{\varepsilon \rightarrow 0+} \int_{0}^{y-\varepsilon}\left(U u_{\xi \xi}-U_{\xi} u_{\xi}+U_{\xi \xi} u\right)\right|_{\xi=0} ^{\xi=p} \mathrm{~d} \eta \\
& \quad+\left.\lim _{\varepsilon \rightarrow 0+} \int_{y+\varepsilon}^{l}\left(U u_{\xi \xi}-U_{\xi} u_{\xi}+U_{\xi \xi} u\right)\right|_{\xi=0} ^{\xi=p} \mathrm{~d} \eta
\end{aligned}
$$

$$
\begin{aligned}
& -\left.\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p}\left(U u_{\eta}-U_{\eta} u\right)\right|_{\eta=0} ^{\eta=y-\varepsilon} \mathrm{d} \xi-\left.\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p}\left(U u_{\eta}-U_{\eta} u\right)\right|_{\eta=y+\varepsilon} ^{\eta=l} \mathrm{~d} \xi \\
= & \left.\int_{0}^{y}\left(U u_{\xi \xi}-U_{\xi} u_{\xi}+U_{\xi \xi} u\right)\right|_{\xi=0} ^{\xi=p} \mathrm{~d} \eta+\left.\int_{y}^{l}\left(U u_{\xi \xi}-U_{\xi} u_{\xi}+U_{\xi \xi} u\right)\right|_{\xi=0} ^{\xi=p} \mathrm{~d} \eta \\
& -\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p}\left[U(x, y ; \xi, y-\varepsilon) u_{\eta}(\xi, y-\varepsilon)-U(x, y ; \xi, 0) u_{\eta}(\xi, 0)\right] \mathrm{d} \xi \\
& +\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p}\left[U_{\eta}(x, y ; \xi, y-\varepsilon) u(\xi, y-\varepsilon)-U_{\eta}(x, y ; \xi, 0) u(\xi, 0)\right] \mathrm{d} \xi \\
& -\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p}\left[U(x, y ; \xi, l) u_{\eta}(\xi, l)-U(x, y ; \xi, y+\varepsilon) u_{\eta}(\xi, y+\varepsilon)\right] \mathrm{d} \xi \\
& +\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p}\left[U_{\eta}(x, y ; \xi, l) u(\xi, l)-U_{\eta}(x, y ; \xi, y+\varepsilon) u(\xi, y+\varepsilon)\right] \mathrm{d} \xi \\
= & \left.\int_{0}^{l}\left(U u_{\xi \xi}-U_{\xi} u_{\xi}+U_{\xi \xi} u\right)\right|_{\xi=0} ^{\xi=p} \mathrm{~d} \eta \\
& -\int_{0}^{p}\left[U(x, y ; \xi, l) u_{\eta}(\xi, l)-U(x, y ; \xi, 0) u_{\eta}(\xi, 0)\right] \mathrm{d} \xi \\
& +\int_{0}^{p}\left[U_{\eta}(x, y ; \xi, l) u(\xi, l)-U_{\eta}(x, y ; \xi, 0) u(\xi, 0)\right] \mathrm{d} \xi \\
& +\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p} U_{\eta}(x, y ; \xi, y-\varepsilon) u(\xi, y-\varepsilon) \mathrm{d} \xi \\
& -\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p} U_{\eta}(x, y ; \xi, y+\varepsilon) u(\xi, y+\varepsilon) \mathrm{d} \xi .
\end{aligned}
$$

So we get the relation

$$
\begin{aligned}
& \iint_{D} U(x, y ; \xi, \eta) f(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta \\
& \quad=\left.\int_{0}^{l}\left[U u_{\xi \xi}-U_{\xi} u_{\xi}+U_{\xi \xi} u\right]\right|_{\xi=0} ^{\xi=p} \mathrm{~d} \eta-\left.\int_{0}^{p} U(x, y ; \xi, \eta) u_{\eta}(\xi, \eta)\right|_{\eta=0} ^{\eta=l} \mathrm{~d} \xi
\end{aligned}
$$

$$
\begin{align*}
& +\left.\int_{0}^{p} U_{\eta}(x, y ; \xi, \eta) u(\xi, \eta)\right|_{\eta=0} ^{\eta=l} \mathrm{~d} \xi+\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p} U_{\eta}(x, y ; \xi, y-\varepsilon) u(\xi, y-\varepsilon) \mathrm{d} \xi \\
& -\lim _{\varepsilon \rightarrow 0+} \int_{0}^{p} U_{\eta}(x, y ; \xi, y+\varepsilon) u(\xi, y+\varepsilon) \mathrm{d} \xi \tag{7}
\end{align*}
$$

There holds following
Lemma. Let φ be any function from $C[0, p]$. Then relation

$$
\lim _{\substack{x \rightarrow x_{0} \\ \eta \rightarrow y}} \int_{0}^{p} U_{\eta}(x, y ; \xi, \eta) \varphi(\xi) \mathrm{d} \xi=-\varphi\left(x_{0}\right) \operatorname{sgn}(y-\eta)
$$

holds with any $x_{0} \in(0, p)$.
Proof. Assume that $y>\eta$. Due to the continuity of $\varphi(x)$ at the point x_{0}, there exists $\delta=\delta(\varepsilon)$ such that $\left|\varphi(x)-\varphi\left(x_{0}\right)\right|<\varepsilon$, if only $\left|x-x_{0}\right|<\delta$. Using the relation (see [8])

$$
U_{\eta}=-U^{*} \operatorname{sgn}(y-\eta),
$$

where
$U^{*}(x, y ; \xi, \eta)=\frac{1}{|y-\eta|^{\frac{2}{3}}} f^{*}\left(\frac{x-\xi}{|y-\eta|^{\frac{2}{3}}}\right), \quad f^{*}(t)=\frac{t}{3 \gamma} \Psi\left(\frac{7}{6}, \frac{4}{3} ; \frac{4}{27} t^{3}\right), \quad \gamma=\frac{3 \sqrt{3 \pi}}{2^{\frac{1}{3}}}$ one can rewrite the integral in the left-hand side of (7) as follows:

$$
\begin{aligned}
& \int_{0}^{p} U_{\eta}(x, y ; \xi, \eta) \varphi(\xi) \mathrm{d} \xi \\
& \quad=-\int_{0}^{p} U^{*}(x, y ; \xi, \eta) \varphi(\xi) \mathrm{d} \xi=-\int_{0}^{p} \frac{1}{|y-\eta|^{\frac{2}{3}}} f^{*}\left(\frac{x-\xi}{|y-\eta|^{\frac{2}{3}}}\right) \varphi(\xi) \mathrm{d} \xi \\
& \quad=\left(-\int_{0}^{x_{1}}-\int_{x_{1}}^{x_{2}}-\int_{x_{2}}^{p}\right) \frac{1}{(y-\eta)^{\frac{2}{3}}} f^{*}\left(\frac{x-\xi}{(y-\eta)^{\frac{2}{3}}}\right) \varphi(\xi) \mathrm{d} \xi \\
& \quad=I_{1}+I_{2}+I_{3}
\end{aligned}
$$

$\left(\right.$ Here $x_{1}=x_{0}-\delta, x_{2}=x_{0}+\delta$.)
The main term I_{2} of obtained sum can be rewritten as

$$
\begin{aligned}
& -\varphi\left(x_{0}\right) \int_{x_{1}}^{x_{2}} \frac{1}{(y-\eta)^{\frac{2}{3}}} f^{*}\left(\frac{x-\xi}{(y-\eta)^{\frac{2}{3}}}\right) \mathrm{d} \xi \\
& -\int_{x_{1}}^{x_{2}} \frac{1}{(y-\eta)^{\frac{2}{3}}} f^{*}\left(\frac{x-\xi}{(y-\eta)^{\frac{2}{3}}}\right)\left[\varphi(\xi)-\varphi\left(x_{0}\right)\right] \mathrm{d} \xi \\
& \quad=I_{21}+I_{22} .
\end{aligned}
$$

Let us calculate the limit of integral I_{21}, as $x \rightarrow x_{0}, \eta \rightarrow y-0$. Introduce to this the variable

$$
t=\frac{x-\xi}{(y-\eta)^{\frac{2}{3}}}
$$

Then $\xi=x-t(y-\eta)^{\frac{2}{3}} \mathrm{~d} \xi=-(y-\eta)^{\frac{2}{3}} \mathrm{~d} t$, obviously, and we obtain that

$$
I_{21}=-\varphi\left(x_{0}\right) \int_{\frac{x-x_{2}}{(y-\eta)^{2 / 3}}}^{\frac{x-x_{1}}{(y-\eta)^{2 / 3}}} f^{*}(t) \mathrm{d} t
$$

If $\left|x-x_{0}\right|<\delta$, then upper limit of this integral is positive and lower limit is negative. Besides, the upper limit tends to $+\infty$ and the lower limit tends to $-\infty$, as $\eta \rightarrow y-0$. Therefore, taking in account the equality [8]

$$
\int_{-\infty}^{\infty} f^{*}(t) \mathrm{d} t=1
$$

we get that

$$
\lim _{\substack{\eta \rightarrow y-0 \\ x \rightarrow x_{0}}} I_{21}=-\varphi\left(x_{0}\right)
$$

It remains to show that the rest integrals I_{21}, I_{1}, I_{3} tend to zero, as $x \rightarrow x_{0}, \eta \rightarrow y-0$.
Let us consider integral I_{22}. Since

$$
\left|I_{22}\right| \leqslant \int_{x_{1}}^{x_{2}}\left|\frac{1}{(y-\eta)^{\frac{2}{3}}} f^{*}\left(\frac{x-\xi}{(y-\eta)^{\frac{2}{3}}}\right)\right|\left|\varphi(\xi)-\varphi\left(x_{0}\right)\right| \mathrm{d} \xi
$$

and $\left|\xi-x_{0}\right|<\delta$, we obtain that

$$
\left|I_{22}\right| \leqslant \varepsilon \int_{\frac{x-x_{2}}{(y-\eta)^{2 / 3}}}^{\frac{x-x_{1}}{(y-\eta)^{2 / 3}}}\left|f^{*}(t)\right| \mathrm{d} t
$$

Then the estimate $\left|f^{*}(t)\right|<C|t|^{-\frac{5}{2}}$ (see [8]) yields the equality

$$
\lim _{\substack{\eta \rightarrow y-0 \\ x \rightarrow x_{0}}} I_{22}=0 .
$$

Let N be a constant such that $|\varphi(x)| \leqslant N \forall x \in[0, l]$. Then

$$
\left|I_{1}\right|<\left|\int_{0}^{x_{1}} \frac{1}{(y-\eta)^{\frac{2}{3}}} f^{*}\left(\frac{x-\xi}{(y-\eta)^{\frac{2}{3}}}\right) \varphi(\xi) \mathrm{d} \xi\right|<N \int_{\frac{x}{(y-\eta)^{2 / 3}}}^{\frac{x-x_{1}}{(y-\eta)^{2 / 3}}}\left|f^{*}(t)\right| \mathrm{d} t \rightarrow 0
$$

as $x \rightarrow x_{0}, \eta \rightarrow y-0$, because both upper and lower limits tend to $+\infty$, as $x \rightarrow x_{0}$, $\eta \rightarrow y-0$.

Analogously

$$
\left|I_{3}\right|<\left|\int_{x_{2}}^{p} \frac{1}{(y-\eta)^{\frac{2}{3}}} f^{*}\left(\frac{x-\xi}{(y-\eta)^{\frac{2}{3}}}\right) \varphi(\xi) \mathrm{d} \xi\right|<N \int_{\frac{x-x_{2}}{(y-\eta)^{2 / 3}}}^{\frac{x-p}{(y-\eta)^{2 / 3}}}\left|f^{*}(t)\right| \mathrm{d} t \rightarrow 0
$$

as $x \rightarrow x_{0}, \eta \rightarrow y-0$.
Thus, lemma is proved in the case $y>\eta$. In the opposite case the proof of the relation

$$
\lim _{\substack{x \rightarrow x_{0} \\ \eta \rightarrow y}} \int_{a}^{b} U_{\eta}(x, y ; \xi, \eta) \varphi(\xi) \mathrm{d} \xi=\varphi\left(x_{0}\right) .
$$

is analogously.
Further, using the Lemma we obtain from (7) that

$$
\begin{array}{rl}
\iint_{D} & U(x, y ; \xi, \eta) f(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta \\
\quad= & \left.\int_{0}^{l}\left(U u_{\xi \xi}-U_{\xi} u_{\xi}+U_{\xi \xi} u\right)\right|_{\xi=0} ^{\xi=p} \mathrm{~d} \eta-\left.\int_{0}^{p} U(x, y ; \xi, \eta) u_{\eta}(\xi, \eta)\right|_{\eta=0} ^{\eta=l} \mathrm{~d} \xi \\
& \quad+\left.\int_{0}^{p} U_{\eta}(x, y ; \xi, \eta) u(\xi, \eta)\right|_{\eta=0} ^{\eta=l} \mathrm{~d} \xi-2 u(x, y)
\end{array}
$$

Thus,

$$
\begin{align*}
2 u(x, y)= & \left.\int_{0}^{l}\left(U u_{\xi \xi}-U_{\xi} u_{\xi}+U_{\xi \xi} u\right)\right|_{\xi=0} ^{\xi=p} \mathrm{~d} \eta-\left.\int_{0}^{p}\left(U u_{\eta}-U_{\eta} u\right)\right|_{\eta=0} ^{\eta=l} \mathrm{~d} \xi \\
& -\iint_{D} U(x, y ; \xi, \eta) f(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta \tag{8}
\end{align*}
$$

Let $u(x, y)$ be any regular solution of equation (1) and $W(x, y ; \xi, \eta)$ be any regular solution of the adjoint equation. Then putting $\varphi=W(x, y ; \xi, \eta), \psi=u(\xi, \eta)$ into (6) we obtain that

$$
\begin{align*}
0= & \left.\int_{0}^{l}\left(W u_{\xi \xi}-W_{\xi} u_{\xi}+W_{\xi \xi} u\right)\right|_{\xi=0} ^{\xi=p} \mathrm{~d} \eta-\left.\int_{0}^{p}\left(W u_{\eta}-W_{\eta} u\right)\right|_{\eta=0} ^{\eta=l} \mathrm{~d} \xi \\
& -\iint_{D} W(x, y ; \xi, \eta) f(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta . \tag{9}
\end{align*}
$$

Both (8) and (9) yield the important relation

$$
\begin{align*}
2 u(x, y)= & \left.\int_{0}^{l}\left(G u_{\xi \xi}-G_{\xi} u_{\xi}+G_{\xi \xi} u\right)\right|_{\xi=0} ^{\xi=p} \mathrm{~d} \eta-\left.\int_{0}^{p}\left(G u_{\eta}-G_{\eta} u\right)\right|_{\eta=0} ^{\eta=l} \mathrm{~d} \xi \\
& -\iint_{D} G(x, y ; \xi, \eta) f(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta \tag{10}
\end{align*}
$$

where

$$
G(x, y ; \xi, \eta)=U(x, y ; \xi, \eta)-W(x, y ; \xi, \eta)
$$

Definition 2. We will say that $G(x, y ; \xi, \eta)$ is the Green function of Problem F_{2} in domain D if it satisfies the following conditions:

$$
\left\{\begin{array}{l}
L[G]=0 \tag{11}\\
G_{y}(x, 0 ; \xi, \eta)=G_{y}(x, l ; \xi, \eta)=0 \\
G(0, y ; \xi, \eta)=G(p, y ; \xi, \eta)=G_{x}(p, y ; \xi, \eta)=0
\end{array}\right.
$$

with respect to variables (x, y);

$$
\left\{\begin{array}{l}
L^{*}[G]=0 \tag{12}\\
G_{\eta}(x, y ; \xi, 0)=G_{\eta}(x, y ; \xi, l)=0 \\
G(x, y ; 0, \eta)=G(x, y ; p, \eta)=G_{\xi}(x, y ; 0, \eta)=0
\end{array}\right.
$$

with respect to variables (ξ, η).
In order to compose the mentioned above Green function we solve the following subsidiary problem.

Problem $\boldsymbol{F}_{\mathbf{0}}$. To find a regular in domain D solution $u(x, y)$ of equation (1) satisfying conditions

$$
\begin{align*}
& u_{y}(x, 0)=0, \quad u_{y}(x, l)=0, \quad 0 \leqslant x \leqslant p \tag{13}\\
& u(0, y)=u(p, y)=u_{x}(p, y)=0, \quad 0 \leqslant y \leqslant l . \tag{14}
\end{align*}
$$

We seek for the solution of this problem of the shape

$$
\begin{equation*}
u(x, y)=\sum_{k=1}^{\infty} X_{k}(x) \cos \frac{k \pi}{l} y \tag{15}
\end{equation*}
$$

where $X_{k}(x)$ are unknown functions.
Let us express the function $f(x, y)$ into Fourier series

$$
\begin{equation*}
f(x, y)=\sum_{k=0}^{\infty} f_{k}(x) \cos \frac{k \pi}{l} y \tag{16}
\end{equation*}
$$

where

$$
f_{k}(x)=\frac{2}{l} \int_{0}^{l} f(x, y) \cos \frac{k \pi}{l} y \mathrm{~d} y
$$

Substituting both (15) and (16) into (1) we get that

$$
\sum_{k=0}^{\infty}\left[X_{k}^{\prime \prime \prime}(x)+\lambda_{k}^{3} X_{k}(x)-f_{k}(x)\right] \cos \frac{k \pi}{l} y=0
$$

Therefore, we obtain the boundary value problem

$$
\left\{\begin{array}{l}
L\left[X_{k}\right]:=X_{k}^{\prime \prime \prime}(x)+\lambda_{k}^{3} X_{k}(x)=f_{k}(x) \tag{17}\\
X_{k}(0)=X_{k}(p)=X_{k}^{\prime}(p)=0
\end{array}\right.
$$

with respect to unknown function $X_{k}(x)$; here $\lambda_{k}^{3}=(k \pi l)^{2}$.
We shall solve problem (17) by Green function method.
Definition 3. We will say that $G_{k}(x, \xi)$ is the Green function of problem (17), if it satisfies the following conditions:
(i) both $G_{k}(x, \xi)$ and $\frac{\partial G_{k}(x, \xi)}{\partial x}$ are continuous on the square $0 \leqslant x \leqslant p, 0 \leqslant \xi \leqslant p$;
(ii) $\frac{\partial^{2} G_{k}(x, \xi)}{\partial x^{2}}$ is discontinuous at the line $x=\xi$ and

$$
\left.\frac{\partial^{2} G_{k}(x, \xi)}{\partial x^{2}}\right|_{x=\xi+0}-\left.\frac{\partial^{2} G_{k}(x, \xi)}{\partial x^{2}}\right|_{x=\xi-0}=1
$$

(iii) $G_{k}(x, \xi)$ satisfies with respect to x the equation

$$
L\left[G_{k}\right]:=\frac{\partial^{3} G_{k}}{\partial x^{3}}+\lambda_{k}^{3} G_{k}=0
$$

in both intervals $0 \leqslant x<\xi$ and $\xi<x \leqslant p$ for $\forall \xi \in(0, p)$;
(iv) It satisfies following boundary value conditions

$$
G_{k}(0, \xi)=G_{k}(p, \xi)=G_{k x}(p, \xi)=0
$$

for $\forall \xi \in[0, p]$.

It is easy to verify that Green function $G_{k}(0, \xi)$ of problem (17) is of the shape:

$$
\begin{align*}
& G_{k}(x, \xi) \\
&=\frac{1}{\bar{\Delta}}\{ 2 e^{-\lambda_{k}\left(\frac{3}{2} p+x-\xi\right)} \sin \left(\frac{\sqrt{3}}{2} \lambda_{k} p+\frac{\pi}{6}\right) \\
&-2 e^{-\frac{\lambda_{k}}{2}(2 x+\xi)} \sin \left(\frac{\sqrt{3}}{2} \lambda_{k} \xi+\frac{\pi}{6}\right) \\
&-2 e^{-\lambda_{k}\left(\frac{3}{2} p-\xi-\frac{x}{2}\right)} \sin \left[\frac{\sqrt{3}}{2} \lambda_{k}(p-x)+\frac{\pi}{6}\right] \\
&+2 e^{-\frac{\lambda_{k}}{2}(\xi-x)} \sin \left[\frac{\sqrt{3}}{2} \lambda_{k}(\xi-x)+\frac{\pi}{6}\right] \\
&\left.+4 e^{-\frac{\lambda_{k}}{2}(3 p+\xi-x)} \sin \left[\frac{\sqrt{3}}{2} \lambda_{k}(p-\xi)\right] \sin \frac{\sqrt{3}}{2} \lambda_{k} x\right\}, \quad 0 \leqslant x \leqslant \xi, \tag{18}\\
& G_{k}(x, \xi) \\
&=\frac{1}{\bar{\Delta}}\{ -2 e^{-\frac{\lambda_{k}}{2}(2 x+\xi)} \sin \left(\frac{\sqrt{3}}{2} \lambda_{k} \xi+\frac{\pi}{6}\right) \\
&-2 e^{-\lambda_{k}\left(\frac{3}{2} p-\xi-\frac{x}{2}\right)} \sin \left[\frac{\sqrt{3}}{2} \lambda_{k}(p-x)+\frac{\pi}{6}\right]+e^{-\lambda_{k}(x-\xi)} \\
&+ 4 e^{-\frac{\lambda_{k}}{2}(3 p+\xi-x)} \sin \left[\frac{\sqrt{3}}{2} \lambda_{k}(p-x)+\frac{\pi}{6}\right] \\
&\left.\times \sin \left(\frac{\sqrt{3}}{2} \lambda_{k} \xi+\frac{\pi}{6}\right)\right\}, \quad \xi \leqslant x \leqslant p,
\end{align*}
$$

where

$$
\bar{\Delta}=3 \lambda_{k}^{2}\left(1-2 e^{-\frac{3}{2} \lambda_{k} p} \sin \left(\frac{\sqrt{3}}{2} \lambda_{k} p+\frac{\pi}{6}\right)\right)
$$

Hence, the solution of problem (17) is of the shape

$$
\begin{equation*}
X_{k}(x)=\int_{0}^{p} G_{k}(x, \xi) f_{k}(\xi) \mathrm{d} \xi \tag{19}
\end{equation*}
$$

Then taking in account (19) we get according to formula (15) the solution $u(x, y)$ of Problem F_{0}

$$
\begin{equation*}
u(x, y)=\sum_{k=1}^{\infty}\left(\int_{0}^{p} G_{k}(x, \xi) f_{k}(\xi) \mathrm{d} \xi\right) \cos \frac{\pi k}{l} y . \tag{20}
\end{equation*}
$$

It stands to reason that we are in need of the proof of the uniform convergence in domain $D=\{(x, y): 0<x<p, 0<y<l\}$ of the series in right-hand side of (20) together with its partial derivatives of needful order.

Let us note to this end that

$$
\begin{equation*}
\left|\sum_{k=1}^{\infty}\left(\int_{0}^{p} G_{k}(x, \xi) f_{k}(\xi) \mathrm{d} \xi\right) \cos \frac{\pi k}{l} y\right| \leqslant \sum_{k=1}^{\infty} \int_{0}^{p}\left|G_{k}(x, \xi)\right|\left|f_{k}(\xi)\right| \mathrm{d} \xi \tag{21}
\end{equation*}
$$

Note that well known estimate

$$
\left|f_{k}(\xi)\right| \leqslant \frac{M_{1}}{k^{2}}, \quad M_{1}=\text { const }>0
$$

holds for $\forall \xi \in[0, p]$ because of the assumed smoothness of function $f(x, y)$. Further, it follows from (19) that

$$
\left|G_{k}(x, \xi)\right| \leqslant \begin{cases}\frac{10}{3} \frac{e^{-\frac{3}{2} \lambda_{k} p}}{\lambda_{k}^{2}}+\frac{2}{3} \frac{e^{-\frac{1}{2} \lambda_{k} \delta_{1}}}{\lambda_{k}^{2}}, & 0 \leqslant x<\xi, 0<\delta_{1}<\xi-x \tag{22}\\ \frac{8}{3} \frac{e^{-\frac{3}{2} \lambda_{k} p}}{\lambda_{k}^{2}}+\frac{1}{3} \frac{e^{-\frac{1}{2} \lambda_{k} \delta_{2}}}{\lambda_{k}^{2}}, & \xi<x \leqslant l, 0<\delta_{2}<x-\xi\end{cases}
$$

or

$$
\left|G_{k}(x, \xi)\right| \leqslant \frac{10}{3} \frac{e^{-\frac{3}{2} \lambda_{k} p}}{\lambda_{k}^{2}}+\frac{2}{3} \frac{e^{-\frac{1}{2} \lambda_{k} \delta}}{\lambda_{k}^{2}} \leqslant M_{2} k^{-\frac{4}{3}}
$$

where M_{2} is some constant independent of k. That jointly with (22) yields the estimate

$$
\int_{0}^{p}\left|G_{k}(x, \xi)\right|\left|f_{k}(\xi)\right| \mathrm{d} \xi \leqslant p M_{1} M_{2} k^{-\frac{10}{3}}
$$

Thus, the series in right-hand side of (20) converges uniformly in D to $u(x, y)$ because of the last estimate, and equality (20) can be rewritten as follows:

$$
\begin{equation*}
u(x, y)=\int_{0}^{p}\left(\sum_{k=1}^{\infty} G_{k}(x, \xi) f_{k}(\xi) \cos \frac{\pi k}{l} y\right) \mathrm{d} \xi \tag{23}
\end{equation*}
$$

We shall prove that the expression (23) of function $u(x, y)$ can be thrice differentiable with respect to x, i.e.

$$
\begin{equation*}
\frac{\partial^{3}}{\partial x^{3}} u(x, y)=\int_{0}^{p}\left(\sum_{k=1}^{\infty} \frac{\partial^{3}}{\partial x^{3}} G_{k}(x, \xi) f_{k}(\xi) \cos \frac{\pi k y}{l}\right) \mathrm{d} \xi . \tag{24}
\end{equation*}
$$

In this order it is enough to show that series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\partial^{3}}{\partial x^{3}} G_{k}(x, \xi) f_{k}(\xi) \cos \frac{\pi k y}{l} \tag{25}
\end{equation*}
$$

converges uniformly in domain D. According to equality $\frac{\partial^{3} G_{k}}{\partial x^{3}}+\lambda_{k}^{3} G_{k}=0$ we obtain similarly as above that

$$
\begin{aligned}
\left|\frac{\partial^{3}}{\partial x^{3}} G_{k}(x, \xi) f_{k}(\xi) \cos \frac{\pi k y}{l}\right| & \leqslant\left|\frac{\partial^{3}}{\partial x^{3}} G_{k}(x, \xi)\right|\left|f_{k}(\xi)\right|=\left|\lambda_{k}^{3} G_{k}(x, \xi)\right|\left|f_{k}(\xi)\right| \\
& \leqslant \lambda_{k}^{3} M_{1} M_{2} k^{-\frac{10}{3}}=\left(\frac{\pi}{l}\right)^{2} M_{1} M_{2} k^{-\frac{4}{3}}
\end{aligned}
$$

That yields the uniform convergence of series (25), evidently. Therefore, derivative $\frac{\partial^{3}}{\partial x^{3}} u(x, y)$ is continuous in D and equality (24) holds.

The validity of the equality

$$
\frac{\partial^{2}}{\partial y^{2}} u(x, y)=\int_{0}^{p}\left(\sum_{k=1}^{\infty}\left(\frac{\pi k y}{l}\right)^{2} G_{k}(x, \xi) f_{k}(\xi) \cos \frac{\pi k y}{l}\right) \mathrm{d} \xi
$$

formally obtained from (23) follows because of estimate

$$
\left(\frac{\pi k y}{l}\right)^{2}\left|G_{k}(x, \xi)\right|\left|f_{k}(\xi)\right| \leqslant\left(\frac{\pi}{l}\right)^{2} M_{1} M_{2} k^{-\frac{4}{3}}, \quad(x, \xi) \in D
$$

Hence, function $u(x, y)$ defined by (23) is the solution of subsidiary Problem F_{0}, really. Putting in (23)

$$
f_{n}(\xi)=\frac{2}{l} \int_{0}^{l} f(\xi, \eta) \cos \frac{\pi k}{l} \eta \mathrm{~d} \eta
$$

(see (16)) we get that

$$
\begin{aligned}
u(x, y) & =\int_{0}^{p} \sum_{k=1}^{\infty} G_{k}(x, \xi) \cos \frac{\pi k y}{l} f_{k}(\xi) \mathrm{d} \xi \\
& =\int_{0}^{p} \int_{0}^{l} f(\xi, \eta) \frac{2}{l} \sum_{k=1}^{\infty} G_{k}(x, \xi) \cos \frac{\pi k}{l} \eta \cos \frac{\pi k}{l} y d \xi \mathrm{~d} \eta \\
& =\int_{0}^{p} \int_{0}^{l} G(x, \xi, y, \eta) f(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta
\end{aligned}
$$

where

$$
\begin{equation*}
G(x, \xi, y, \eta)=\frac{2}{l} \sum_{k=1}^{\infty} G_{k}(x, \xi) \cos \frac{\pi k}{l} \eta \cos \frac{\pi k}{l} y . \tag{26}
\end{equation*}
$$

It is easily seen that function $G(x, \xi, y, \eta)$ satisfies conditions (11) and (12), i.e. it is Green function of boundary value Problem F_{2} of equation (1). The convergence in D of series
(26) and its needful order derivatives follows from the estimates of function $G_{k}(x, \xi)$ given above.

According to Definition 2 of Green function $G(x, \xi, y, \eta)$ we obtain from (10) the solution $u(x, y)$ of considered Problem F_{2} of the shape

$$
\begin{align*}
2 u(x, y)= & \int_{0}^{l} G_{\xi \xi}(x, y, p, \eta) \psi_{2}(\eta) \mathrm{d} \eta-\int_{0}^{l} G_{\xi \xi}(x, y, 0, \eta) \psi_{1}(\eta) \mathrm{d} \eta \\
& -\int_{0}^{l} G_{\xi}(x, y, p, \eta) \psi_{3}(\eta) \mathrm{d} \eta+\int_{0}^{p} G(x, y, \xi, 0) \varphi_{1}(\xi) \mathrm{d} \xi \\
& -\int_{0}^{p} G(x, y, \xi, l) \varphi_{2}(\xi) \mathrm{d} \xi-\iint_{D} G(x, y, \xi, \eta) f(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta . \tag{27}
\end{align*}
$$

Hence, there holds
Theorem 2. Let $\varphi_{i}(x) \in C[0, p], i=1,2, \psi_{j}(y) \in C^{3}[0, l], j=1,2, \psi_{3}(y) \in C^{2}[0, l]$ and $f(x, y) \in C_{x, y}^{0,2}(\bar{D})$, and let the following compatibility conditions (5) are fulfilled. Then there exists a unique solution $u(x, y)$ of Problem F_{2} which can be represent by formula (27).

References

1. H. Block, Sur les équations linéaires aux dérivées partielles à caractéristiques multiples, Note 1 , Ark. Mat. Astron. Fys. 7(13), pp.1-34, 1912; Note 2, ibid., 7(21), pp. 1-30, 1912; Note 3, ibid., 8(23), pp. 1-51, 1912-1913.
2. E. del Vecchio, Sulle equazioni $Z_{x x x}-Z_{y}+\varphi_{1}(x, y)=0, Z_{x x x}-Z_{y y}+\varphi_{2}(x, y)=0$, Mem. R. Accad. Sci. Torino, Ser. 2, 66, pp. 1-41, 1915.
3. L. Cattabriga, Potenziali di linea e di dominio per equazioni non paraboliche in due variabili a caratteristiche multiple, Rend. Semin. Mat. Univ. Padova, 31, pp. 1-45, 1961.
4. S. Abdinazarov, On a third order equation, Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, 6, pp. 3-7, 1989 (in Russian).
5. A.R. Khoshimov, Some boundary value problem for an equation of missing type with multiple characteristics, Uz.b. Mat. Zh., 2, pp. 93-97, 1995 (in Russian).
6. O.S. Ryzhov, Asymptotics map of the transonic flow of viscous heat-conducting gas around revolution bodies, Prikl. Mat. Mekh., 2(6), pp. 1004-1014, 1952 (in Russian).
7. V.N. Diesperov, On Green's function of the linearized viscous transonic equation, U.S.S.R. Comput. Math. Math. Phys., 12(5), pp. 1265-1279, 1972.
8. T.D. Dzhuraev, Yu.P. Apakov, Automodelling solution of some boundary value problems for a third-order equation with multiple characteristics, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.Mat. Nauki, 15(2), pp. 18-26, 2007 (in Russian).
9. H. Bateman, A. Erdelyi, Higher Transcendental Functions, Vol. I, MC Graw-Hill Book Company, New York, 1953.
10. Yu. Irgashev, Yu.P. Apakov, First boundary value problem for a third-order equation of pseudoelliptic type, Uzb. Mat. Zh., 2, pp. 44-51, 2006 (in Russian).
11. Yu.P. Apakov, S. Rutkauskas, On the Green function for one boundary value problem in the infinite domain, in: Proceedings of International Conference on Differential Equations and Their Applications (DETA'2009), dedicated to Prof. M. Sapagovas 70th Anniversary, pp. 106116, Technologija, Kaunas, 2009.
