Effects of pressure work on natural convection flow around a sphere with radiation heat loss

T. Akhter¹, M.A. Alim²

¹Department of Mathematics, The University of Asia Pacific
Dhaka-1209, Bangladesh

²Department of Mathematics, Bangladesh University of Engineering and Technology
Dhaka-1000, Bangladesh
maalim@math.buet.ac.bd

Received: 2009-06-20 Revised: 2010-05-27 Published online: 2010-09-17

Abstract. The effects of pressure work with radiation heat loss on natural convection flow on a sphere have been investigated in this paper. The governing boundary layer equations are first transformed into a non-dimensional form and the resulting nonlinear partial differential equations are then solved numerically using finite-difference method with Keller-box scheme. We have focused our attention on the evaluation of shear stress in terms of local skin friction and rate of heat transfer in terms of local Nusselt number, velocity as well as temperature profiles. Numerical results have been shown graphically and tabular form for some selected values of parameters set consisting of radiation parameter R_d, pressure work parameter G_e, surface temperature parameter θ_w and the Prandtl number Pr.

Keywords: thermal radiation, Prandtl number, natural convection, pressure work.

Nomenclature

- a: radius of the sphere [m]
- C_f: skin-friction coefficient
- C_p: specific heat at constant pressure [J kg⁻¹ K⁻¹]
- f: dimensionless stream function
- g: acceleration due to gravity [m s⁻²]
- Ge: pressure work parameter
- Gr: Grashof number
- k: thermal conductivity [W m⁻¹ K⁻¹]
- Nu: Nusselt number
- Pr: Prandtl number
- q_r: radiative heat flux [W/m²]
- q_c: conduction heat flux [W/m²]
- R_d: radiation parameter
- r: distance from the symmetric axis to the surface [m]
- T: temperature of the fluid
- T_{∞}: temperature of the ambient fluid [K]
- T_w: temperature at the surface [K]
- U: velocity component along the surface [m s⁻¹]
- V: velocity component normal to the surface [m s⁻¹]
- u: dimensionless velocity along the surface
dimensionless velocity normal to the surface
coordinate along the surface [m]
coordinate normal to the surface [m]

Greek symbols

\(\alpha_r \) Rosseland mean absorption coefficient [cm\(^3\)/s] \\
\(\nu \) kinematic viscosity [m\(^2\)/s] \\
\(\zeta \) dimensionless coordinates \\
\(\beta \) volumetric coefficient of thermal expansion [K\(^{-1}\)] \\
\(\rho \) density of the fluid [kg m\(^{-3}\)] \\
\(\sigma \) Stephan–Boltzmann constant \\
\(\eta \) dimensionless coordinates [J s\(^{-1}\)m\(^{-2}\)K\(^{-4}\)] \\
\(\sigma_s \) scattering coefficient [m\(^{-1}\)] \\
\(\theta \) dimensionless temperature \\
\(\mu \) dynamic viscosity of the fluid [kg m\(^{-1}\)s\(^{-1}\)] \\
\(\tau_w \) wall-shear-stress [N/m\(^2\)] \\
\(\psi \) stream function [m\(^2\)s\(^{-1}\)]

1 Introduction

Radiative energy passes perfectly through a vacuum thus radiation is significant mode of heat transfer when no medium is present. Radiation contributes substantially to energy transfer in furnaces, combustion chambers, fires, and to the energy emission from a nuclear explosion. Radiation must be considered in calculating thermal effects in rocket nozzles, power plants, engines, and high temperature heat exchangers. Radiation can sometimes be important even though the temperature level is not elevated and other modes of heat transfer are present. Radiation has a great effect in the energy equation which leads to a highly non-linear partial differential equation. Free convection flow is often encountered in cooling of nuclear reactors or in the study of the structure of stars and planets. The study of temperature and heat transfer has great importance in practical fields because of its almost universal occurrence in many branches of science and engineering. Again heat transfer analysis is most important for the proper sizing of fuel elements in the nuclear reactors cores to prevent burnout. The pressure work effect plays an important role in natural convection in various devices which are subjected to large deceleration or which operate at high rotational speeds and also in strong gravitational field processes on large scales (on large planets) and in geological processes. The discussion and analysis of natural convection flows, pressure work and radiation effects are generally ignored but here we have considered both these effects around a sphere. It is established that pressure work effects are generally rather more important both for gases and liquids. Also the problems of various types of shapes over or on a free convection boundary layer flow have been studied by many researchers.

Amongst them Nazar et al. [1], Huang and Chen [2] considered the free convection boundary layer on an isothermal sphere and on an isothermal horizontal circular cylinder both in a micropolar fluid. Molla et al. [3] have studied the problem of natural convection flow along a vertical wavy surface with uniform surface temperature in presence of heat generation or absorption. Again Alim et al. [4, 5] considered the pressure work effect along a circular cone and stress work effects on MHD natural convection flow along a sphere. Alam et al. [6–8] considered the pressure work effects for flow along vertical per-
meable circular cone, vertical flat plate and along a sphere. But they were not concerned about the radiation effects. They considered only viscous dissipation and pressure work effects.

Soundalgekar et al. [9] have studied radiation effects on free convection flow of a gas past a semi-infinite flat plate using the Cogley–Vincenti–Giles equilibrium model Cogley et al. [10], later Hossain and Takhar [11] have analyzed the effects of radiation using the Rosseland diffusion approximation which leads to non-similar solutions for free convection flow past a heated vertical plate. Akhtar and Alim [12] studied the effects of radiation on natural convection flow around a sphere with uniform surface heat flux.

In the present work, the effects of pressure work with radiation heat loss on natural convection flow around a sphere have been investigated. The results are obtained for different values of relevant physical parameters. The natural convection boundary layer flow on a sphere of viscous incompressible fluid has been considered. The governing partial differential equations are reduced to locally non-similar partial differential forms by adopting appropriate transformations. The transformed boundary layer equations are solved numerically using implicit finite difference method together with Keller box scheme describe by Keller [13] and later by Cebeci and Bradshaw [14].

Numerical results have been shown in terms of local skin friction, rate of heat transfer, velocity profiles as well as temperature profiles for a selection of relevant physical parameters consisting of heat radiation parameter R_d, Prandtl number Pr and the pressure work parameter Ge are shown graphically. Some results for skin friction coefficient and the rate of heat transfer for different values of radiation parameter, pressure work parameter and the Prandtl number has been presented in tabular form as well.

2 Formulation of the problem

It is assumed that the surface temperature of the sphere is T_w, where $T_w > T_\infty$. Here T_∞ is the ambient temperature of the fluid, T is the temperature of the fluid in the boundary layer, g is the acceleration due to gravity, $r(x)$ is the radial distance from the symmetrical axis to the surface of the sphere and (u, v) are velocity components along the (x, y) axis.

Fig. 1. Physical model and coordinate system.
Under the usual Boussinesq approximation, the equations those govern the flow are

\[
\frac{\partial}{\partial X}(rU) + \frac{\partial}{\partial Y}(rV) = 0,
\]

\[
U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial Y} = \nu \frac{\partial^2 U}{\partial Y^2} + \rho g \beta (T - T_{\infty}) \sin \left(\frac{X}{a} \right),
\]

\[
U \frac{\partial T}{\partial X} + V \frac{\partial T}{\partial Y} = \frac{k}{\rho C_p} \frac{\partial^2 T}{\partial Y^2} - \frac{1}{\rho C_p} \frac{\partial q_r}{\partial Y} + \frac{T \beta}{\rho c_p} U \frac{\partial p}{\partial X}.
\]

We know for hydrostatic pressure, \(\partial p/\partial X = \rho g \).

The boundary conditions of equation (1) to (3) are

\[
U = V = 0, \quad T = T_w \quad \text{at} \quad Y = 0,
\]

\[
U \to 0, \quad T \to T_{\infty} \quad \text{as} \quad Y \to \infty,
\]

where \(\rho \) is the density, \(k \) is the thermal conductivity, \(\beta \) is the coefficient of thermal expansion, \(\mu \) is the viscosity of the fluid, \(C_p \) is the specific heat due to constant pressure and \(q_r \) is the radiative heat flux in the \(y \) direction. In order to reduce the complexity of the problem and to provide a means of comparison with future studies that will employ a more detail representation for the radiative heat flux; we will consider the optically dense radiation limit. Thus the Rosseland diffusion approximation proposed by Siegel and Howell [15] and is given by simplified radiation heat flux term as:

\[
q_r = -\frac{4\sigma}{3(\alpha_r + \sigma_s)} \frac{\partial T^4}{\partial Y}.
\]

We now introduce the following non-dimensional variables:

\[
\xi = \frac{X}{a}, \quad \eta = \frac{Y}{a}, \quad u = a \nu \frac{Gr^{-1/4} U}{Gr^{-1/2} U}, \quad v = a \nu Gr^{-1/4} V,
\]

\[
\theta = \frac{T - T_{\infty}}{T_w - T_{\infty}} \quad \text{Gr} = \frac{g \beta (T_w - T_{\infty})}{\nu^2},
\]

where \(\nu (= \mu/\rho) \) is the reference kinematic viscosity and \(Gr \) is the Grashof number, \(\theta \) is the non-dimensional temperature function.

Substituting variable (6) into equations (1)–(3) leads to the following non-dimensional equations

\[
\frac{\partial}{\partial \xi} (ru) + \frac{\partial}{\partial \eta} (rv) = 0,
\]

\[
u \frac{\partial u}{\partial \xi} + v \frac{\partial u}{\partial \eta} = \frac{\partial^2 u}{\partial \eta^2} + \theta \sin \xi,
\]

\[
u \frac{\partial \theta}{\partial \xi} + v \frac{\partial \theta}{\partial \eta} = \frac{1}{Pr} \frac{\partial}{\partial \eta} \left[\left(1 + \frac{4}{3} Rd (1 + \Delta \theta)^3 \right) \frac{\partial \theta}{\partial \eta} \right] + Ge \left(\theta + \frac{T_{\infty}}{T_w - T_{\infty}} \right) u,
\]
where $\Delta = \frac{T_w}{T_\infty} - 1$ with the boundary conditions (4) as

$$
u = v = 0, \quad \theta = 1 \quad \text{at} \quad \eta = 0,$$
$$u \to 0, \quad \theta \to 0 \quad \text{as} \quad \eta \to \infty,$$ \hspace{1cm} (10)

where Rd is the radiation-conduction parameter, Pr is the Prandtl number and Ge is the pressure work parameter defined respectively as

$$Rd = \frac{4\sigma T_\infty^3}{k(\alpha_r + \alpha_s)}, \quad Pr = \frac{\mu C_p}{k} \quad \text{and} \quad Ge = \frac{g\beta a}{C_p}. \hspace{1cm} (11)$$

To solve equations (8)–(9), subject to the boundary conditions (10), we assume the following variables

$$\psi = \xi r(\xi)f(\xi, \eta), \quad \theta = \vartheta(\xi, \eta), \hspace{1cm} (12)$$

where ψ is the non-dimensional stream function defined in the usual way as

$$u = \frac{1}{r} \frac{\partial \psi}{\partial \eta} \quad \text{and} \quad v = -\frac{1}{r} \frac{\partial \psi}{\partial \xi}. \hspace{1cm} (13)$$

Substituting (13) into equations (8)–(9), after some algebra the transformed equations take the following form

$$\frac{\partial^3 f}{\partial \eta^3} + \left(1 + \frac{\xi}{\sin \xi} \cos \xi\right) f \frac{\partial^2 f}{\partial \eta^2} - \left(\frac{\partial f}{\partial \eta}\right)^2 + \sin \xi \vartheta = \xi \left(\frac{\partial f}{\partial \eta} \frac{\partial \theta}{\partial \xi} - \frac{\partial \theta}{\partial \eta} \frac{\partial f}{\partial \xi}\right),$$ \hspace{1cm} (14)

$$\frac{1}{Pr} \frac{\partial}{\partial \eta} \left[\left(1 + \frac{4}{3} Rd(1 + \Delta \vartheta)^3\right) \frac{\partial \vartheta}{\partial \eta}\right] + \left(1 + \frac{\xi}{\sin \xi} \cos \xi\right) f \frac{\partial \theta}{\partial \eta} + Ge \left(\theta + \frac{T_\infty}{T_w - T_\infty}\right) \xi f' = \xi \left(\frac{\partial \vartheta}{\partial \eta} \frac{\partial \vartheta}{\partial \xi} - \frac{\partial \vartheta}{\partial \eta} \frac{\partial f}{\partial \xi}\right). \hspace{1cm} (15)$$

Along with boundary conditions

$$f = \frac{\partial f}{\partial \eta} = 0, \quad \theta = 1 \quad \text{at} \quad \eta = 0,$$
$$\frac{\partial f}{\partial \eta} \to 0, \quad \theta \to 0 \quad \text{as} \quad \eta \to \infty. \hspace{1cm} (16)$$

It can be seen that near the lower stagnation point of the sphere, i.e., at $\xi = 0$, equations (14) and (15) reduce to the following ordinary differential equations:

$$f'''' + 2ff'' - f'^2 + \vartheta = 0, \hspace{1cm} (17)$$
$$\frac{1}{Pr} \left[\left(1 + \frac{4}{3} Rd(1 + \Delta \vartheta)^3\right) \vartheta'\right]' + 2f\vartheta' = 0. \hspace{1cm} (18)$$

291
Subject to the boundary conditions
\[
f(0) = f'(0) = 0, \quad \theta(0) = 1, \quad f' \to 0, \quad \theta \to 0 \quad \text{as} \quad \eta \to \infty. \tag{19}
\]
In the above equations primes denote the differentiation with respect to \(\eta \).

In practical applications, the physical quantities of principle interest are the wall-shear-stress, the heat transfer rate in terms of the skin-friction coefficients \(C_f \) and Nusselt number \(Nu_x \) respectively, which can be written as
\[
C_f = \frac{Gr^{-3/4} a^2}{\rho \nu} \tau_w \quad \text{and} \quad Nu = \frac{a Gr^{-1/4}}{k(T_w - T_\infty)} q_w, \tag{20}
\]
where
\[
\tau_w = \mu \left(\frac{\partial u}{\partial y} \right)_{y=0} \quad \text{and} \quad q_w = -k \left(\frac{\partial T}{\partial y} \right)_{y=0}. \tag{21}
\]
Here we have used a reference velocity \(U = \nu Gr^{1/5} \).

Using the variables (6) and (13) and the boundary condition (19) into (20)–(21), we get
\[
C_f = \xi f''(\xi, 0), \tag{22}
\]
\[
Nu = -\left(1 + \frac{4}{3} Rd \theta_w^3 \right) \theta'(\xi, 0), \tag{23}
\]
where \(\theta_w = T_w/T_\infty \).

The values of the velocity and temperature distribution are calculated respectively from the following relations:
\[
u = \frac{\partial f}{\partial \eta}, \quad \theta = \theta(\xi, \eta). \tag{24}
\]

3 Results and discussion

The present problem has been solved numerically for different values of relevant physical parameters and for a fixed value of \(\Delta = 0.1 \). Results have been obtained in terms of local skin friction and the rate of heat transfer in terms of local Nusselt number, velocity as well as temperature profiles.

Velocity and temperature profiles are shown in Figs. 2(a)–2(b) for different values of radiation parameter \(Rd \) while Prandtl number \(Pr = 7.0 \) and pressure work parameter \(Ge = 1.5 \). From Fig. 2(a) it is observed that for higher values of radiation the velocity becomes higher and there is no significant change found in the boundary layer thickness.

Fig. 2(b) shows that the temperature becomes higher from the wall value of temperature along \(\eta \) direction and reaches at maximum values which occur between \(\eta = 0.5 \) to
Effects of pressure work on natural convection flow around a sphere with radiation heat loss

1.5, then all the profiles gradually decrease, cross each other near the point \(\eta = 1.4 \) and finally approach to zero, the asymptotic value.

Effects of the variation of pressure work on velocity and temperature profiles are shown in the Figs. 3(a) and 3(b). Significant changes have been found in maximum velocity and temperature due to the change of \(Ge \). In Fig. 3(a) for \(Ge = 0.1 \) the maximum velocity is 0.19532 which occurs at \(\eta = 0.88811 \) and for \(Ge = 2.5 \) the maximum velocity is 0.77141 which occurs at \(\eta = 0.78384 \). Thus we observe that due to the change of \(Ge \) from 0.1 to 2.5 the velocity rises up 294.95\%.

Fig. 3(b) shows that the typical temperature profile which is maximum temperature at wall then it gradually decrease along \(\eta \) direction and finally approaches to the asymptotic value (zero). But larger values of \(Ge \) do not show the typical temperature profiles. In this case along \(\eta \) direction temperature gradually increased from the wall value to the peak and then decrease and approach to the asymptotic value.

Moreover, in the Fig. 4(a) it is observed that the velocity decrease with increasing \(Pr \). Fig. 4(b) shows that the temperature increase along \(\eta \) direction up to the maximum value and then gradually decreases to zero. All the temperature profiles cross each other near \(\eta = 1.1 \). Also for higher values of \(Pr \) temperature goes up near the wall but it cause the thermal boundary layer thickness to reduce and thus the temperature profiles have a crossing point near \(\eta = 1.1 \). The value of \(\xi = 0.3927 \) has been chosen to obtain all the results in Figs. 2, 3 and 4.

Fig. 5(a) shows the skin friction against \(\xi \) for different values of radiation parameter \(Rd \). From this figure we observe that skin friction becomes lower for higher values of radiation. From Fig. 5(b) we see that the rate of heat transfer increase, between \(\xi = 0.0 \) to 0.1 intersect at \(\xi = 0.1 \) and then decrease for higher values of \(Rd \) within the region \(\xi > 0.1 \). In this figure we found both positive and negative Nusselt numbers. This is due to the variation of fluid temperature near the wall. The rate of heat transfer changes its sign in case of fluid temperature near the wall becomes higher or lower than the wall temperature which may occur due to the imposed conditions on the problem.

Fig. 6(a) shows the skin friction coefficient \(C_f \) for different values of pressure work parameter \(Ge \). It is observed from the figure that the pressure work have great influence on skin friction as well as on the rate of heat transfer. Frictional force at the wall becomes much higher towards the downstream for higher values of \(Ge \) and the rate of heat transfer as shown in Fig. 6(b) gradually decreased for higher values of pressure work parameter.

Again from Figs. 7(a) and 7(b) it is observed that the \(Pr \) have similar type of influences on skin friction and on the rate of heat transfer but those are not as much as that of \(Ge \). Also rate of heat transfer increase between \(\xi = 0.0 \) to 0.7 intersect at \(\xi = 0.7 \) and then decrease for increasing \(Pr \) while \(\xi > 0.7 \).

Table 1 shows the numerical values of skin friction coefficient \(C_f \) and rate of heat transfer \(Nu \) at the surface of the sphere from \(\xi = 0.0 \) (lower stagnation point) to \(\xi = \pi/2 \) for different values of \(Ge \). As in Figs. 6(a) and 6(b) the numerical data also shows that the frictional force at the wall becomes higher at the downstream and the rate of heat transfer gradually decreases for higher values of \(Ge \).
Fig. 2. Velocity (a) and temperature (b) profiles for different values of Rd while $Pr = 7.0$ and $Ge = 1.5$.

Fig. 3. Velocity (a) and temperature (b) profiles for different values of Ge while $Rd = 1.0$ and $Pr = 7.0$.

Fig. 4. Velocity (a) and temperature (b) profiles for different values of Pr while $Ge = 1.5$ and $Rd = 1.0$.

294
Effects of pressure work on natural convection flow around a sphere with radiation heat loss

Fig. 5. Skin friction (a) and heat transfer (b) coefficients for different values of R_d while $Pr = 7.0$ and $Ge = 1.5$.

Fig. 6. Skin friction (a) and heat transfer (b) coefficients for different values of Ge while $R_d = 1.0$ and $Pr = 7.0$.

Fig. 7. Skin friction (a) and heat transfer (b) coefficients for different values of Pr while $R_d = 1.0$ and $Ge = 1.5$.
from the wall value to the peak and then decrease and approach to the asymptotic value.

η files change its typical nature, such as along change of Ge as on skin friction and the rate of heat transfer have been found in this study. Due to the work and radiation heat loss. From the present investigation the following conclusions may be drawn:

Significant effects of pressure work on velocity and temperature profiles as well as on skin friction and the rate of heat transfer have been found in this study. Due to the change of Ge the velocity rises up 294.95%. For larger values of Ge the temperature profiles change its typical nature, such as along η direction temperature gradually increased from the wall value to the peak and then decrease and approach to the asymptotic value.

<table>
<thead>
<tr>
<th>Ge</th>
<th>C_f</th>
<th>Nu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.00000</td>
<td>0.72390</td>
</tr>
<tr>
<td>0.4</td>
<td>0.00000</td>
<td>0.72390</td>
</tr>
<tr>
<td>0.8</td>
<td>0.00000</td>
<td>0.72390</td>
</tr>
<tr>
<td>0.1</td>
<td>0.00000</td>
<td>0.72390</td>
</tr>
</tbody>
</table>

Table 1. Skin friction coefficient and rate of heat transfer against ξ for different values of Ge against fixed radiation numbers $Rd = 1.0$ and $Pr = 0.72$.

<table>
<thead>
<tr>
<th>Ge</th>
<th>C_f</th>
<th>Nu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.07470</td>
<td>0.56152</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.07470</td>
<td>0.56152</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.07470</td>
<td>0.56152</td>
</tr>
</tbody>
</table>

4 Conclusion

Natural convection flow around a sphere has been studied with the effects of pressure work and radiation heat loss. From the present investigation the following conclusions may be drawn:

Significant effects of pressure work on velocity and temperature profiles as well as on skin friction and the rate of heat transfer have been found in this study. Due to the change of Ge the velocity rises up 294.95%. For larger values of Ge the temperature profiles change its typical nature, such as along η direction temperature gradually increased from the wall value to the peak and then decrease and approach to the asymptotic value.
Also the frictional force at the wall becomes much higher towards the downstream for higher values of \(Ge \) and the rate of heat transfer gradually decreased for higher values of pressure work parameter.

The velocity becomes higher for higher values of radiation and there is no significant change found in the boundary layer thickness. For higher values of radiation the maximum temperature decreases. Along the \(\eta \) direction temperature goes up from the wall value and reaches at maximum then gradually decrease and finally approach to zero. Maximum temperature occurs away from the wall which is not only the radiation effect but also the influence of pressure work as well. Also the skin friction becomes lower for higher values of radiation and rate of heat transfer increase near the wall and then decrease for higher values of \(Rd \).

Prandtl number rise leads to decrease the velocity and temperature and increase the skin friction and reduce the rate of heat transfer.

References