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Abstract. Finite element method is used to solve two-dimensional governing mass,
momentum and energy equations for steady state, mixed convection problem inside a
vented square cavity. The cavity consists of adiabatic left, top and bottom walls and
heated right vertical wall; but it also contains a heat conducting horizontal square block
located somewhere inside the cavity. Forced flow conditionsare imposed by providing an
inlet at the bottom of the left wall and an exit at the top of theright wall, through which
the working fluid escape out of the cavity. The aim of the studyis to describe the effect
of such block on the flow and thermal fields. The investigations are conducted for various
values of geometric size, location and thermal conductivity of the block under constant
Reynolds and Prandtl numbers. Various results such as the streamlines, isotherms,
heat transfer rates in terms of the average Nusselt number, average fluid temperature
in the cavity and the temperature at the center of solid blockare presented for different
parameters. It is observed that the block size and location have significant effect on both
the flow and thermal fields but the solid-fluid thermal conductivity ratio has insignificant
effect on the flow field. The results also indicate that the average Nusselt number at the
heated surface, the average temperature of the fluid inside the cavity and the temperature
at the center of solid block are strongly dependent on the configurations of the system
studied under different geometrical and physical conditions.

Keywords: finite element method, square block, vented cavity and mixedconvection.

Nomenclature

d dimensional length of the block [m] g gravitational acceleration [ms−2]
D dimensionless length of the block h convective heat transfer coefficient
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k thermal conductivity of fluid p dimensional pressure [Nm−2]
[Wm−1K−1] P dimensionless pressure

ks thermal conductivity of the solid blockPr Prandtl number
[Wm−1K−1] Ra Rayleigh number

K solid fluid thermal conductivity ratio Re Reynolds number
L length of the cavity [m] Ri Richardson number
lx dimensional distance betweeny-axis T dimensional temperature [K]

and the block center [m] u, v dimensional velocity components
ly dimensional distance betweenx-axis [ms−1]

and the block center [m] U, V dimensionless velocity components
Lx dimensionless distance betweeny-axis V̄ cavity volume [m3]

and the block center w height of the opening [m]
Ly dimensionless distance betweenx-axis x, y Cartesian coordinates [m]

and the block center X, Y dimensionless Cartesian
Nu average Nusselt number coordinates

Greek symbols Subscripts

α thermal diffusivity [m2s−1] av average
β thermal expansion coefficient [K−1] h heated wall
ν kinematic viscosity [m2s−1] i inlet state
θ dimensionless temperature c block center
ρ density of the fluid [kgm−3] s solid

Abbreviation

CBC convective boundary conditions

1 Introduction

Efficient convection heat transfers are essential in moderntechnology and also very im-
portant in many industrial areas. Hence, it is necessary to study and simulate these
phenomena. Several numerical and experimental methods have been developed to in-
vestigate cavities with and without obstacle because thesegeometries have practical en-
gineering and industrial applications, such as in the design of solar collectors, thermal
design of building, air conditioning, cooling of electronic devices, furnaces, lubrication
technologies, chemical processing equipment, drying technologies etc. Analysis of above
phenomena, incorporating a solid heat conducting obstruction extends its usability to
practical situations. Particularly, a conductive material in an inert atmosphere inside a
furnace with a constant flow of gas from outside and the cooling of electronic circuit
boards constitutes some practical applications for the present study. Conjugate natural
convection heat transfer inside an inclined square cavity with an internal conducting
block was studied by Das and Reddy [1]. At the same time, Zhao et al. [2] numerically
investigated conjugate natural convection in enclosures with external and internal heat
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sources and Xu et al. [3] experimentally observed the thermal flow around a square
obstruction on a vertical wall in a differentially heated cavity. Later on, Bhoite et al. [4]
performed numerical investigation on the problem of mixed convection flow and heat
transfer in a shallow enclosure with a series of block-like heat generating components
for a range of Reynolds and Grashof numbers and block-to-fluid thermal conductivity
ratios. They showed that higher Reynolds numbers created a recirculation of increasing
strength at the core region and the effect of buoyancy becameinsignificant beyond a
Reynolds number of typically 600 and hence the thermal conductivity ratio had a negli-
gible effect on the velocity fields. Braga and de Lemos [5] investigated steady laminar
natural convection within a square cavity filled with a fixed volume of conducting solid
material consisting of either circular or square obstacles. They used finite volume method
with a collocated grid to solve governing equations. They found that the average Nusselt
number for cylindrical rods was slightly lower than those for square rods. The problem
of laminar natural convection heat transfer in a square cavity with an adiabatic arc shaped
baffle was numerically analyzed by Tasnim and Collins [6]. They identified that flow
and thermal fields were modified by the blockage effect of the baffle and the degree of
flow modification due to blockage was enhanced by increasing the shape parameter of
the baffle. Bilgen and Yamane [7] examined the effect of conjugate heat transfer by
laminar natural convection and conduction in two-dimensional rectangular enclosures
with openings. A chimney inside the enclosure was simulatedas a vertical rectangular
body with a uniform heat flux on one side and insulation on the other. They investigated
the effects of the various geometrical parameters and the thickness of the insulation layer
on the fluid flow and heat transfer characteristics. Dong and Li [8] studied conjugate
effect of natural convection and conduction in a complicated enclosure. They observed
the influences of material character, geometrical shape andRayleigh number on the heat
transfer in the overall concerned region. They finally concluded that the flow and heat
transfer increased with the increase of thermal conductivity in the solid region and besides,
both geometric shape and Rayleigh number also affected the overall flow and heat transfer
greatly. Roychowdhury et al. [9] analyzed the natural convective flow and heat transfer
features for a heated cylinder placed in a square enclosure with different thermal boundary
conditions. House et al. [10] studied the effect of a centered, square, heat conducting body
on natural convection in a vertical enclosure. They showed that heat transfer across the
cavity enhanced or reduced by a body with a thermal conductivity ratio less or greater
than unity. The same geometry was considered in the numerical study of Oh et al. [11],
where the conducting body generated heat within the cavity.Under these situations, it
was shown that the flow was driven by a temperature differenceacross the cavity and
a temperature difference caused by the heat-generating source. Very recently Rahman
et al. [12] analyzed mixed convection in a rectangular cavity with a heat conducting
horizontal circular cylinder by using finite element method.

In the light of the above literature, it has been pointed out that there is no significant
information about mixed convection processes when a heat conducting square block exists
within a vented cavity in different locations. The purpose of the present study is to
examine how the size, location and thermal conductivity of the inner heat-conducting
block affect the mixed convection phenomena within the vented cavity.
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2 Problem definition

A schematic diagram of the system considered in the present study is shown in Fig. 1.
The system consists of a square cavity with sides of lengthL, within which a square heat
conducting block with lengthd and thermal conductivityks is located somewhere (lx, ly)
within the cavity. A Cartesian co-ordinate system is used with origin at the lower left
corner of the computational domain. The top, bottom and leftvertical walls of the cavity
are kept adiabatic and the right vertical wall is kept at a uniform constant temperature,
Th. The inflow opening located on the bottom of the left wall and the outflow opening
of the same size is placed at the top of the opposite heated wall as shown in Fig. 1. For
simplicity, the size of the two openings,w is set equal to the one-tenth of the cavity length
(L). Cold air flows through the inlet inside the cavity at a uniform velocity,ui. It is also
assumed that the incoming flow is at the ambient temperatureTi and the outgoing flow is
assumed to have zero diffusion flux for all dependent variables i.e. convective boundary
conditions (CBC). All solid boundaries are assumed to be rigid no-slip walls. Emphasis
is placed on the effect of the various orientations and dimension of the heat-conducting
block.

Fig. 1. Schematic of the problem with the domain and boundaryconditions.

3 Mathematical model

In the present problem, it can be considered that the flow is steady, two-dimensional,
laminar incompressible and there is no viscous dissipation. The gravity acts in the ver-
tically downward direction, fluid properties are constant and fluid density variations are
neglected except in the buoyancy term (Boussinesq approximation) and radiation effect is
neglected.

Using non-dimensional variables defined below, the non-dimensional forms of the
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governing equations of the present problem are obtained as follows:
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For heat conducting block, the energy equation is
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The appropriate dimensionless form of the boundary conditions used to solve
equations (1)–(5) inside the cavity are given as:

U = 1, V = 0, θ = 0 at the inlet;

P = 0 convective boundary condition (CBC) at the outlet;

U = 0, V = 0 at all solid boundaries;

θ = 1 at the heated right vertical wall;
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at the solid-fluid horizontal interfaces of the block.
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The average Nusselt number (Nu) at the hot wall is defined as

Nu =
1

Lh

Lh/L
∫

0

∂θ

∂X

∣

∣

∣

∣

X=1

dY (6)

and the bulk average temperature in the cavity is defined as

θav =

∫

1

V̄
θ dV̄ , (7)

whereLh = L − 0.1/L is the length of the hot wall and̄V is the cavity volume.

4 Numerical technique

The numerical procedure used in this work is based on the Galerkin weighted residual
method of finite element formulation. The application of this technique is well described
by Taylor and Hood [13] and Dechaumphai [14]. In this method,the solution domain
is discretized into finite element meshes, which are composed of non-uniform triangular
elements. Then the nonlinear governing partial differential equations (i.e. mass, mo-
mentum and energy equations) are transferred into a system of integral equations by
applying Galerkin weighted residual method. The integration involved in each term of
these equations is performed by using Gauss quadrature method. The nonlinear algebraic
equations so obtained are modified by imposition of boundaryconditions. These modified
nonlinear equations are transferred into linear algebraicequations by using Newton’s
method. Finally, these linear equations are solved by usingTriangular Factorization
method.

4.1 Grid refinement check

Five different grid sizes of3976, 4798, 6158, 6278 and7724 elements with25555, 30619,
38973, 39870, and48945 nodes respectively are chosen for the present simulation totest
the independency of the results with the grid size variations. Average Nusselt number
at the heated surface, average temperature of the fluid inside the cavity and the solution
time are monitored atRi = 1.0, Lx = Ly = 0.5, D = 0.2 andK = 5.0 for these grid
elements as shown in Table 1.

Table 1. Grid sensitivity check atRi = 1.0, K = 5.0, D = 0.2 andLx = Ly = 0.5

Elements 3976 4798 6158 6278 7724
(Nodes) (25555) (30619) (38973) (39870) (48945)

Nu 4.8463 4.8478 4.8488 4.8489 4.8489
θav 0.1905 0.1905 0.1905 0.1905 0.1905

Time [s] 385.219 493.235 682.985 698.703 927.359
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The magnitude of average Nusselt number at the heated surface and average tem-
perature of the fluid inside the cavity for39870 nodes with6278 elements shows a very
little difference with the results obtained for the other denser grids. Hence for the rest of
the calculation in this study, a grid size of39870 nodes with6278 elements is chosen for
better accuracy.

4.2 Code validation

For code validation tests, see Rahman et al. [12].

5 Results and discussion

A numerical study has been performed through finite element method to analyze the
laminar mixed convection heat transfer and fluid flow in a vented square cavity filled
with a horizontal square solid block. Effect of the parameters such as Richardson number
(Ri), dimensionless block length (D), solid-fluid thermal conductivity ratio (K) and the
location of the solid block (Lx, Ly) on heat transfer and fluid flow of the cavity have
analyzed. We have presented the results in two sections. Thefirst section has focused
on flow and temperature fields, which contents streamlines and isotherms for the different
cases. The following section has discussed heat transfer including average Nusselt num-
bers at the hot wall, average fluid temperature in the cavity and temperature at the block
center. The range ofRi for this investigation has varied from0.0 to 5.0 by changingGr
while keepingRe fixed at100. Air is chosen as working fluid withPr = 0.71.

5.1 Flow and temperature fields

Flow and temperature fields have simulated using streamlines and isotherms for the men-
tioned parameters. Effect of block size on streamlines and isotherms have presented in
Figs. 2 and 3 forK = 5.0, Lx = Ly = 0.5 and variousRi (0.0, 1.0 and5.0). The flow
structure in the absence of free convection effect (i.e.Ri = 0) and for the four different
values ofD has shown in the left column of Fig. 2. AtRi = 0.0 andD = 0.0, it has
been seen that a comparatively large uni-cellular vortex appears at the left top corner of
the cavity and a very small vortex appears at the right bottomcorner of the cavity, which
are owing to the effect of buoyancy force. Further increase of D sharply decreases the
size of the vortex. This is due to increasing the size of the block gives rise to a decrease
in the space available for the buoyancy force induced vortex. ForRi = 1.0 andD = 0.0,
it has been also seen from Fig. 2 that the natural convection effect is present, but remains
relatively weak at high values ofD, since the open lines characterizing the imposed flow
are still dominant. Further increase ofRi to 5.0, gradually increase the size of the vortex
for D = 0.0. This expansion of the size of the vortex squeezes the induced forced flow
path resulting almost same kinetic energy in the bulk-induced flow as that of the inlet
port. It must be noticed that in this case the size of the vortex reduced dramatically at the
highest value ofD = 0.6. The isotherms in the absence of block (D = 0.0) and for the
three values ofRi are shown in the bottom row of Fig. 3.
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Fig. 2. Streamlines for different block length and Richardson numbers, while
Lx = Ly = 0.5 andK = 5.0.
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Fig. 3. Isotherms for different block length and Richardsonnumbers, while
Lx = Ly = 0.5 andK = 5.0.
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At Ri = 0.0 andD = 0.0, the high temperature region is concentrated near the
hot wall and the isothermal lines are linear and parallel to the heated surface in the
cavity, indicating conduction and forced convection dominant heat transfer. On the other
hand, the concentrated temperature region become thin and the isothermal lines become
nonlinear forRi = 1.0 and various values ofD. FurtherRi increases to5.0, the
nonlinearity in the isotherms become higher and plume formation is profound, indicating
the well established natural convection. As we compared theisothermal lines forD =
0.2 and variousRi with the isothermal lines forD = 0.0 and variousRi, only small
difference in isotherms is observed. Further increasing the length of the block gives the
higher nonlinearity in the isothermal lines of the cavity.

The effect of the solid-fluid thermal conductivity ratio (K) on streamlines and iso-
therms forD = 0.2 and Lx = Ly = 0.5 and variousRi have presented in Figs. 4
and 5 respectively. AtRi = 0.0 andK = 0.2, the bulk induced flow expands in the
cavity resulting increase in potential energy. Here a smallrecirculation cell is formed
just at the top of the inlet port of the cavity. The streamlines for the other cases (i.e.
K = 1.0, 5.0, 10.0) atRi = 0.0 are almost identical. Further asRi increases, the vortex
spreads. As a consequence, the induced flow is squeezed and the vortex covers the cavity,
indicating the supremacy of natural convection in the cavity. Again atRi = 0.0 and
K = 0.2, the isothermal lines are almost parallel and concentratedto the hot surface as
shown in Fig. 5. Making a comparison of the isothermal lines for Ri = 0.0 and various
K, no significant difference is found except that the isothermal lines at higherK are
shifted from the center of the block. AsRi increases for a permanentK, nonlinearity of
the isotherms becomes higher and plume formation is philosophical, indicating the well
established natural convection heat transfer.

The distribution of streamlines and isothermal lines for various locations of the
square block atRi = 0.0, 1.0 and5.0, whileD = 0.2 andK = 5.0 have shown in Figs. 6
and 7. When the inner block is placed at the center(0.25, 0.5) as shown in the bottom row
of the Fig. 6, a bi-cellular vortex is seen just above the inlet port and occupies the left-top
portion of the cavity and a pocket of fluid formed at the right bottom corner in the cavity
for Ri = 0.0. Further atRi = 1.0 the bi-cellular vortex spreads and the pocket of fluid
the right bottom corner in the cavity is out. Also the flow changes its pattern from bi-
cellular vortex to a uni-cellular vortex atRi = 5.0. The corresponding isotherms for the
lower values ofRi are uniformly distributed around the heat source, display that the heat
is mainly transport by diffusion due to weak buoyancy flow. The distribution of isotherms
in the cavity atRi = 5.0 is significantly different from that at the lower values ofRi,
because the buoyancy induced convection becomes more predominant than conduction.
When the inner block moves closer to the heated surface alongthe mid-horizontal plane,
the pattern of vortex located just above the inlet port in thecavity is also uni-cellular. The
distribution of the isotherms for differentRi shows a similar pattern to the case, where
block moves near the left wall along the mid-horizontal plane for differentRi. However,
when the inner block moves closer to the bottom wall along themid-vertical plane a very
small uni-cellular vortex is formed just the top of the inletat Ri = 0.0 and1.0, but for
Ri = 5.0, the flow pattern has changed drastically from a very small vortex into two
large vortices and thereby squeezes the induced flow path dueto the supremacy of natural

540



Effect of the Presence of a Heat Conducting Horizontal Square Block

Fig. 4. Streamlines for different thermal conductivity ratios and Richardson numbers,
while Lx = Ly = 0.5 andD = 0.2.
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Fig. 5. Isotherms for different thermal conductivity ratios and Richardson numbers,
while Lx = Ly = 0.5 andD = 0.2.
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Fig. 6. Streamlines for different locations of the block andRichardson numbers, while
K = 5.0 andD = 0.2.

543



Md. M. Rahman, M. A. Alim, S. Saha, M. K. Chowdhury

Fig. 7. Isotherms for different locations of the block and Richardson numbers while
K = 5.0 andD = 0.2.
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convection in the cavity. The isothermal lines in this case are more concentrated and
vertical at the heat source forRi = 0.0, 1.0, due to weak buoyancy flow. AsRi increases
to 5.0, the isotherms become nonlinear and plume is formed which are the cryptogram of
strong natural convection heat transfer. Also when the inner block moves closer to the top
wall along the mid-vertical plane a uni-cellular vortex hasformed just over the inlet port
and occupies the left-top portion in the cavity and a pocket of fluid formed at the right
bottom corner in the cavity forRi = 0.0. Further increase ofRi gradually develops the
size of the vortex, located at the left top corner of the cavity and diminishes the pocket
of the fluid at the right bottom corner in the cavity. The isothermal lines surrounding the
heat source seem to have no significant difference that of as the block moves closer to the
left wall along the mid-vertical plane.

5.2 Heat transfer

Plots of the average Nusselt number (Nu) at the heated wall, average temperature (θav)
of the fluid in the cavity and the dimensionless temperature (θc) at the block center as a
function ofRi andD have shown in Fig.8. AsRi increases, average Nusselt number (Nu)
at the heated wall increases monotonically for all values ofD, which is due to increasing
Ri enhances convective heat transfer. On the other hand, for a particular values ofRi
average Nusselt number (Nu) at the heated wall is the highest forD = 0.6 in the forced
convection dominated region (0.0 ≤ Ri ≤ 1.0) and forD = 0.4 in the free convection
dominated region. It has been seen that the average temperature (θav) of the fluid in
the cavity and the temperature (θc) at the block center increase with increasingRi for a
particular values ofD. On the other hand, the average temperature (θav) of the fluid in
the cavity and the temperature (θc) at the block center increase with increasingD for a
particular value ofRi. This can be attributed to the fact that a large centered square block
narrows the regions available for both the warm and cold fluidflows.

(a) (b) (c)

Fig. 8. Effect of block length on (a) average Nusselt number;(b) average fluid tempe-
rature and (c) temperature at the block center for variousRi, while Lx = Ly = 0.5

andK = 5.0.
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The effect of Richardson number on the average Nusselt number (Nu) at the heated
surface, average temperature of the fluid in the cavity and temperature at the block center
for different solid-fluid thermal conductivity ratio has shown in Fig. 9. AsRi increases,
average Nusselt number (Nu) at the hot surface sharply increases for all values ofK. A
careful observation on Fig. 9(a) shows thatNu is the highest forK = 5.0 and10.0 at
Ri ≤ 0.4 and forK = 1.0 at0.4 < Ri < 1.0. Beyond these values ofRi it is the highest
for K = 0.2. As Ri increases average temperature of the fluid and the temperature at
the block center increases gradually for all values ofK in the cavity. On the other hand,
for a particular value ofRi the average temperature (θav) of the fluid in the cavity and
the temperature (θc) at the block center is always the lowest forK = 0.2. This scenario
occurs because the block withK = 0.2 acts as an insulator and prevents heat transfer
between the hot and the cold fluid streams.

(a) (b) (c)

Fig. 9. Effect of thermal conductivity ratio on (a) average Nusselt number; (b) average
fluid temperature and (c) temperature at the block center forvarious Ri, while

Lx = Ly = 0.5 andD = 0.6.

(a) (b) (c)

Fig. 10. Effect of the locations of the block on (a) average Nusselt number; (b) average
fluid temperature and (c) temperature at the block center forvariousRi, whileK = 5.0

andD = 0.2.

546



Effect of the Presence of a Heat Conducting Horizontal Square Block

The average Nusselt number (Nu) at the heated surface, the average temperature
(θav) of the fluid and the temperature (θc) at the block center in the cavity are plotted
against Richardson numbers and for the four different locations of the block have shown in
Fig. 10. From these figures it has seen that the average Nusselt number smoothly increases
with increasingRi and the average temperature of the fluid and the temperature at the
block center in the cavity are not monotonic with increasingRi for different locations of
the solid block.

6 Conclusion

A numerical investigation is made of laminar mixed-convective in a square cavity with
a heat conducting horizontal square block. Results are obtained for wide ranges of pa-
rameters Richardson number (Ri), dimensionless block length (D), solid-fluid thermal
conductivity ratio (K) and the location of the solid block (Lx, Ly).

In view of the obtained results, the following findings have been summarized:

• Block size affects strongly the streamline distribution inthe cavity. As a result,
buoyancy forced-induced circulation cell reduces with increasing block size. Com-
paratively small effect on the isotherms is observed for different block size. The
average Nusselt number at the heated surface is the highest for the largest block
lengthD = 0.6 in the forced convection dominated region and for the secondlargest
length D = 0.4 in the free convection dominated region. On the other hand, a
gradual increase in the heat transfer rate is found with increasingRi at constant
values of block length.

• Material properties (K) have insignificant effect on the flow field and have significant
effect on the thermal fields. An unexpected result is found for the dependence of
thermal transport on the solid-fluid thermal conductivity ratio. For somewhat large
solid block an obvious enhancement in the heat transfer is obtained for the largest
values ofK in the forced convection dominated region and for the lowestvalue of
K in the free convection dominated region. However, a steady increase in the heat
transfer rate is found with increasingRi at constant values ofK.

• Locations of the block have significant effect on the flow and thermal fields. The
value of average Nusselt number is the highest in the forced convection dominated
area when the block is located near the top wall along the mid-vertical plane and in
the free convection dominated area when the block moves closure to the left vertical
wall along the mid-horizontal plane. On the other hand, a gradual increase in the heat
transfer rate has found with increasingRi at constant values of block length. The
values ofθav andθc are not monotonic with increasing values ofRi for different
locations of the block.
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