Infinite point and Riemann–Stieltjes integral conditions for an integro-differential equation

Ahmed El-Sayeda, Reda Gamalb

aFaculty of Science, Alexandria University, Alexandria, Egypt
amasayed@alexu.edu.eg

bFaculty of Science, Al-Azhar University, Cairo, Egypt
redagamal@azhar.edu.eg

Received: August 18, 2018 / Revised: December 4, 2018 / Published online: September 27, 2019

Abstract. In this paper, we study the existence of solutions for two nonlocal problems of integro-differential equation with nonlocal infinite-point and Riemann–Stieltjes integral boundary conditions. The continuous dependence of the solution will be studied.

Keywords: existence of solutions, continuous dependence, nonlocal condition, Riemann–Stieltjes condition, infinite point condition.

1 Introduction

In the last few years, some investigators have established a lot of useful and interesting functional differential equation with the nonlocal condition in order to achieve various goals; see [1–9, 11, 12, 14–21] and the references cited therein.

In this paper, we are concerned with the nonlocal problem for the integro-differential equation

\[
\frac{dx}{dt} = f\left(t, x(t), \int_0^t g(s, x(s)) \, ds\right), \quad \text{a.e. } t \in (0, 1),
\]

with the nonlocal condition

\[
\sum_{k=1}^{m} a_k x(\tau_k) = x_0, \quad a_k \geq 0, \quad \tau_k \in (0, 1).
\]
As applications, the nonlocal problem of equation (1) with the Riemann–Stieltjes integral condition

\[\int_0^1 x(s) \, dg(s) = x_0 \]

will be studied. Also, the nonlocal problem of equation (1) with infinite-point boundary condition

\[\sum_{k=1}^{\infty} a_k x(\tau_k) = x_0 \]

will be studied.

2 Main results

2.1 Integral representation

Lemma 1. Let \(B = \sum_{k=1}^{m} a_k \neq 0 \), the solution of the nonlocal problem (1)–(2), if it exist, then it can be represented by the integral equation

\[
x(t) = B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \, ds \right] \\
+ \int_0^t f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \, ds.
\]

(5)

Proof. Let \(x \) be a solution of the nonlocal problem (1)–(2). Integrating both sides of (1), we get

\[
x(t) = x(0) + \int_0^t f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \, ds.
\]

(6)

Using the nonlocal condition (2), we get

\[
\sum_{k=1}^{m} a_k x(\tau_k) = x(0) \sum_{k=1}^{m} a_k + \sum_{k=1}^{m} a_k \int_0^{\tau_k} f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \, ds,
\]

then

\[
x(0) = \frac{1}{\sum_{k=1}^{m} a_k} \left[x_0 - \sum_{k=1}^{m} a_k \int_0^{\tau_k} f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \, ds \right].
\]

(7)
Using (6) and (7), we obtain
\[
x(t) = B^{-1}\left[x_0 - \sum_{k=1}^{m} a_k \int_0^t f\left(s, x(s), \int_0^s g(\theta, x(\theta)) d\theta \right) ds \right] \\
+ \int_0^t f\left(s, x(s), \int_0^s g(\theta, x(\theta)) d\theta \right) ds.
\]

2.2 Existence of solution

2.2.1 Functional equation approach

Consider the nonlocal problem (1)–(2) with the assumptions:

(i) \(f : [0, T] \times \mathbb{R}^2 \to \mathbb{R} \) satisfies Caratheodory condition, i.e., \(f \) is measurable in \(t \) for any \(x, y \in \mathbb{R} \) and continuous in \(x, y \) for almost all \(t \in [0, 1] \). There exist a function \(c_1 \in L^1[0, 1] \) and a positive constant \(b_1 > 0 \) such that
\[
|f(t, x, y)| \leq c_1(t) + b_1|x| + b_1|y|.
\]

(ii) \(g : [0, 1] \times \mathbb{R} \to \mathbb{R} \) satisfies Caratheodory condition, i.e., \(g \) is measurable in \(t \) for any \(x \in \mathbb{R} \) and continuous in \(x \) for almost all \(t \in [0, 1] \). There exist a function \(c_2 \in L^1[0, 1] \) and a positive constant \(b_2 > 0 \) such that
\[
|g(t, x)| \leq c_2(t) + b_2|x|.
\]

(iii) \[
\sup_{\tau \in [0, 1]} \int_0^\tau c_1(s) ds \leq M_1, \quad \sup_{\tau \in [0, 1]} \int_0^\tau c_2(s) ds \leq M_2,
\]

(iv) \(2b_1 + b_1b_2 < 1 \).

Definition 1. By a solution of the nonlocal problem (1)–(2) we mean a function \(x \in C[0, 1] \) that satisfies (1)–(2).

Theorem 1. Let assumptions (i)–(iv) be satisfied, then the nonlocal problem (1)–(2) has at least one solution.

Proof. Define the operator \(A \) associated with the integral equation (5) by
\[
Ax(t) = B^{-1}\left[x_0 - \sum_{k=1}^{m} a_k \int_0^t f\left(s, x(s), \int_0^s g(\theta, x(\theta)) d\theta \right) ds \right] \\
+ \int_0^t f\left(s, x(s), \int_0^s g(\theta, x(\theta)) d\theta \right) ds.
\]

Let \(Q_r = \{ x \in \mathbb{R} : ||x|| \leq r \} \), where \(r = B^{-1}(|x_0| + 2M_1 + 2b_2M_2)/(1 - (2b_1 + b_1b_2)) \). Then we have, for \(x \in Q_r \),

\[
|Ax(t)| \leq B^{-1} \left[|x_0| + \sum_{k=1}^{m} a_k \int_0^{|x(s)|} f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \, ds \right] + \int_0^t \left| f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \right| \, ds
\]

\[
\leq B^{-1} \left[|x_0| + \sum_{k=1}^{m} a_k \int_0^{|x(s)|} \left(c_1(s) + b_1|x(s)| + b_1 \int_0^s |g(\theta, x(\theta))| \, d\theta \right) \, ds \right] + \int_0^t \left(c_1(s) + b_1|x(s)| + b_1 \int_0^s |g(\theta, x(\theta))| \, d\theta \right) \, ds
\]

\[
\leq B^{-1} \left[|x_0| + \sum_{k=1}^{m} a_k \left(M_1 + b_1r + b_1 \int_0^t \int_0^s c_2(\theta) + b_2|x(\theta)| \, d\theta \, ds \right) \right] + M_1 + b_1r + b_1 \int_0^t \int_0^s (c_2(\theta) + b_2|x(\theta)|) \, d\theta \, ds
\]

\[
\leq B^{-1}|x_0| + M_1 + b_1r + b_1M_2 + \frac{1}{2}b_1b_2r + M_1 + b_1r + b_1M_2 + \frac{1}{2}b_1b_2r
\]

\[
= B^{-1}|x_0| + 2M_1 + 2b_1r + 2b_1M_2 + b_1b_2r = r.
\]

This proves that \(A : Q_r \to Q_r \) and the class of functions \(\{Ax\} \) is uniformly bounded in \(Q_r \).

Now, let \(t_1, t_2 \in (0, 1) \) such that \(|t_2 - t_1| < \delta\), then

\[
|Ax(t_2) - Ax(t_1)|
\]

\[
\leq \int_{t_1}^{t_2} \left| f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \right| \, ds
\]

\[
\leq \int_{t_1}^{t_2} \left(c_1(s) + b_1|x(s)| + b_1 \int_0^s |g(\theta, x(\theta))| \, d\theta \right) \, ds
\]

http://www.journals.vu.lt/nonlinear-analysis
Infinite point and Riemann–Stieltjes integral conditions for an integro-differential equation

\[\leq \int_{t_1}^{t_2} c_1(s) \, ds + (t_2 - t_1)b_1 r + b_1 \int_{t_1}^{t_2} c_2(\theta) \, d\theta \, ds \]

\[+ \frac{1}{2} b_1 b_2 \left(t_2^2 - t_1^2 \right). \]

This means that the class of functions \(\{ Ax \} \) is equicontinuous in \(Q_r \).

Let \(x_n \in Q_r, x_n \rightharpoonup x (n \to \infty) \), then from continuity of the functions \(f \) and \(g \) we obtain \(f(t, x_n(t), y_n(t)) \to f(t, x(t), y(t)) \) and \(g(t, x_n(t)) \to g(t, x(t)) \) as \(n \to \infty \). Also

\[
\lim_{n \to \infty} A x_n(t) = \lim_{n \to \infty} \left[B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} f \left(s, x_n(s), \int_{0}^{s} g \left(\theta, x_n(\theta) \right) \, d\theta \right) \right] \right] \\
+ \int_{0}^{\tau} f \left(s, x_n(s), \int_{0}^{s} g \left(\theta, x_n(\theta) \right) \, d\theta \right) \, ds \]
\]

Using assumptions (i)–(ii) and Lebesgue dominated convergence theorem [13], from (8) we obtain

\[
\lim_{n \to \infty} A x_n(t) = \left[B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} \lim_{n \to \infty} f \left(s, x_n(s), \int_{0}^{s} g \left(\theta, x_n(\theta) \right) \, d\theta \right) \right] \right] \\
+ \int_{0}^{\tau} \lim_{n \to \infty} f \left(s, x_n(s), \int_{0}^{s} g \left(\theta, x_n(\theta) \right) \, d\theta \right) \, ds = A x(t). \]

Then \(A x_n \to A x \) as \(n \to \infty \). This means that the operator \(A \) is continuous.

\[
\lim_{t \to 1} x(t) = \left[B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} f \left(s, x(s), \int_{0}^{s} g \left(\theta, x(\theta) \right) \, d\theta \right) \right] \right] \\
+ \int_{0}^{1} f \left(s, x(s), \int_{0}^{s} g \left(\theta, x(\theta) \right) \, d\theta \right) \, ds \in C[0, 1],
\]

and

\[
\lim_{t \to 0} x(t) = B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} f \left(s, x(s), \int_{0}^{s} g \left(\theta, x(\theta) \right) \, d\theta \right) \right] \in C[0, 1].
\]

Then by Schauder fixed point theorem [10] there exist at least one solution \(x \in C[0, 1] \) of the integral equation (5).

To complete the proof, differentiating (5) we obtain
\[
\frac{dx}{dt} = \frac{d}{dt} \left\{ B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} \left(f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \right) \, ds \right] \right\}
+ \int_{0}^{t} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds
= 0 + \frac{d}{dt} \int_{0}^{t} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds
= f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right).
\]

Also, from the integral equation (5), we obtain
\[
x(\tau_k) = B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} \left(f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \right) \, ds \right]
+ \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds
\]
and
\[
\sum_{k=1}^{m} a_k x(\tau_k) = \sum_{k=1}^{m} a_k B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} \left(f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \right) \, ds \right]
+ \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds.
\]

Then
\[
\sum_{k=1}^{m} a_k x(\tau_k) = x_0.
\]

Then there exist at least one solution \(x \in C[0,1] \) of the nonlocal problem of functional differential equation (1)–(2).

2.2.2 Coupled system approach

Let the function \(f \) and \(g \) satisfies the conditions:

\((i^*) \) \(f : [0,T] \times \mathbb{R}^2 \rightarrow \mathbb{R} \) satisfies Caratheodory condition, i.e., \(f \) is measurable in \(t \) for any \(x,y \in \mathbb{R} \) and continuous in \(x,y \) for almost all \(t \in [0,1] \). There exist a function \(m_1 \in L^1[0,1] \) such that
\[
|f(t,x,y)| \leq m_1(t).
\]

http://www.journals.vu.lt/nonlinear-analysis
(ii*) \(g : [0, 1] \times \mathbb{R} \to \mathbb{R} \) satisfies Caratheodory condition, i.e., \(g \) is measurable in \(t \) for any \(x \in \mathbb{R} \) and continuous in \(x \) for almost all \(t \in [0, 1] \). There exist a function \(m_2 \in L^1[0, 1] \) such that
\[
|g(t, x)| \leq m_2(t).
\]

(iii*)
\[
\sup_{t \in [0, 1]} \int_0^t m_1(s) \, ds \leq M_1, \quad \sup_{t \in [0, 1]} \int_0^t m_2(s) \, ds \leq M_2.
\]

Now, let
\[
y(t) = \int_0^t g(\theta, x(\theta)) \, d\theta,
\]
then
\[
x(t) = B^{-1} \left[x_0 - \sum_{k=1}^m a_k \int_0^t f(s, x(s), y(s)) \, ds \right] + \int_0^t f(s, x(s), y(s)) \, ds. \tag{10}
\]

Let \(X \) be the Banach space of all order pairs \((x, y)\) with the norm
\[
\|(x, y)\|_X = \|x\|_C + \|y\|_C = \sup_{t \in [0, 1]} |x(t)| + \sup_{t \in [0, 1]} |y(t)|.
\]

Definition 2. By a solution of the nonlocal problem (1)–(2) we mean a function \(x \in C^1[0, 1] \) that satisfies \((1)–(2)\).

Theorem 2. Let assumptions (i*)–(iii*) be satisfied, then the nonlocal problem (1)–(2) has at least one solution.

Proof. Define the operator \(A \) associated with the integral equation (9)–(10) by
\[
A(x(t), y(t)) = \left(B^{-1} \left[x_0 - \sum_{k=1}^m a_k \int_0^t f(s, x(s), y(s)) \, ds \right] + \int_0^t f(s, x(s), y(s)) \, ds, \right)
\]

Let \(Q_r = \{(x, y) \in \mathbb{R}^2 : \|x\| \leq r_1, \|y\| \leq r_2, \|(x, y)\| \leq r_1 + r_2 = r\} \), where \(r = M_1 + M_2 \).

Then we have, for \((x, y) \in Q_r\)
\[
A(x(t), y(t)) = \left(B^{-1} \left[x_0 - \sum_{k=1}^m a_k \int_0^t f(s, x(s), y(s)) \, ds \right] + \int_0^t f(s, x(s), y(s)) \, ds, \right)
\]

but
\[
\left| B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_0^\tau f(s, x(s), y(s)) \, ds \right] + \int_0^t f(s, x(s), y(s)) \, ds \right| \\
\leq B^{-1} \left[|x_0| + \sum_{k=1}^{m} a_k \int_0^\tau m_1(s) \, ds \right] + \int_0^t m_1(s) \, ds \\
\leq B^{-1} |x_0| + 2M_1 \tag{11}
\]

and
\[
\left| \int_0^t g(\theta, x(\theta)) \, d\theta \right| \leq \int_0^t m_2(\theta) \, d\theta \leq M_2. \tag{12}
\]

From (11) and (12) we get
\[
\| A(x, y) \|_X \leq B^{-1} |x_0| + 2M_1 + M_2.
\]

This prove that \(A : Q_r \rightarrow Q_r \) and the class of functions \(\{ A(x, y) \} \) is uniformly bounded in \(Q_r \).

Now, let \(t_1, t_2 \in (0, 1) \) such that \(|t_2 - t_1| < \delta \), then
\[
|A(x(t_2), y(t_2)) - A(x(t_1), y(t_1))|
\]
\[
= \left| \left(B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_0^\tau f(s, x(s), y(s)) \, ds \right] + \int_0^t f(s, x(s), y(s)) \, ds, \right. \right |
\]
\[
\left. \int_0^{t_2} g(\theta, x(\theta)) \, d\theta \right) \right| \\
- \left(B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_0^\tau f(s, x(s), y(s)) \, ds \right] + \int_0^t f(s, x(s), y(s)) \, ds, \right. \right |
\]
\[
\left. \int_0^{t_1} g(\theta, x(\theta)) \, d\theta \right) \right|
\]
\[
= \left| \left(\int_{t_1}^{t_2} f(s, x(s), y(s)) \, ds, \int_{t_1}^{t_2} g(\theta, x(\theta)) \, d\theta \right) \right|.
\]

but
\[
\left| \int_{t_1}^{t_2} f(s, x(s), y(s)) \, ds \right| \leq \int_{t_1}^{t_2} m_1(s) \, ds, \quad \left| \int_{t_1}^{t_2} g(\theta, x(\theta)) \, d\theta \right| \leq \int_{t_1}^{t_2} m_2(s) \, ds. \tag{13}
\]
From (13) we get

\[|A(x(t_2), y(t_2)) - A(x(t_1), y(t_1))| \leq \int_{t_1}^{t_2} (m_1(s) + m_2(s)) \, ds. \]

This means that the class of functions \(\{A(x, y)\} \) is equicontinuous in \(Q_r \).

Let \(x_n \in Q_r \), \(x_n \to x \) \((n \to \infty) \), then from continuity of the functions \(f \) and \(g \) we obtain \(f(t, x_n(t), y_n(t)) \to f(t, x(t), y(t)) \) and \(g(t, x_n(t)) \to g(t, x(t)) \) as \(n \to \infty \).

Also

\[\lim_{n \to \infty} A(x_n(t), y_n(t)) = \lim_{n \to \infty} \left(B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_0^{T_k} f(s, x_n(s), y_n(s)) \, ds \right] + \int_0^t f(s, x_n(s), y_n(s)) \, ds, \right. \]

\[\left. \quad \int_0^t g(s, x_n(\theta)) \, d\theta \right) \]

\[= \left(B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_0^{T_k} f(s, x(s), y(s)) \, ds \right] + \int_0^t f(s, x(s), y(s)) \, ds, \right. \]

\[\left. \quad \int_0^t g(s, x(\theta)) \, d\theta \right) \]

\[= A(x(t), y(t)). \]

Using assumptions (i)–(ii) and Lebesgue dominated convergence theorem [13], from (14) we obtain

\[\lim_{n \to \infty} A(x_n(t), y_n(t)) = A(x(t), y(t)). \]

Then \(Ax_n \to Ax \) as \(n \to \infty \). This means that the operator \(A \) is continuous.

\[\lim_{t \to 1} x(t) = \left\{ B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_0^{T_k} f(s, x(s), y(s)) \, ds \right] + \int_0^1 f(s, x(s), y(s)) \, ds \right\} \]

\[\in C[0, 1], \]

Nonlinear Anal. Model. Control, 24(5):733–754
and
\[
\lim_{t\to 1} y(t) = \int_0^1 g(s, x(\theta)) \, d\theta \in C[0, 1],
\]
\[
\lim_{t\to 0} x(t) = B^{-1} \left[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} f(s, x(s), y(s)) \, ds \right] \in C[0, 1],
\]
\[
\lim_{t\to 0} y(t) = 0 \in C[0, 1],
\]

Then by Schauder fixed point theorem [10] there exist at least one solution
\(x \in C[0, 1] \) of the integral equation (9)–(10).

To complete the proof, differentiating (10), we obtain
\[
\frac{dx}{dt} = \frac{d}{dt} \left\{ B^{-1} \left[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} f(s, x(s), y(s)) \, ds \right] + \int_0^t f(s, x(s), y(s)) \, ds \right\}
\]
\[
= 0 + \frac{d}{dt} \int_0^t f(s, x(s), y(s)) \, ds = f(s, x(s), y(s)),
\]
\[
y(t) = \int_0^t g(s, x(\theta)) \, d\theta.
\]

Also, from the integral equation (9)–(10) we obtain
\[
x(\tau_k) = B^{-1} \left[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} f(s, x(s), y(s)) \, ds \right] + \int_0^{\tau_k} f(s, x(s), y(s)) \, ds,
\]
\[
y(t) = \int_0^t g(s, x(\theta)) \, d\theta,
\]

and
\[
\sum_{k=1}^m a_k x(\tau_k) = \sum_{k=1}^m a_k B^{-1} \left[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} f(s, x(s), y(s)) \, ds \right]
\]
\[
+ \sum_{k=1}^m a_k \int_0^{\tau_k} f(s, x(s), y(s)) \, ds
\]
\[
y(t) = \int_0^t g(s, x(\theta)) \, d\theta.
\]
Then
\[
\sum_{k=1}^{m} a_k x(\tau_k) = x_0.
\]

Hence, the nonlocal problem (1)–(2) is equivalent to integral equation (9)–(10).

2.3 Uniqueness of the solution

Let \(f \) and \(g \) satisfy the following assumptions:

\((v) \) \(f : [0, T] \times \mathbb{R}^2 \to \mathbb{R} \) is measurable in \(t \) for any \(x, y \in \mathbb{R} \) and satisfies the Lipschitz condition
\[
|f(t, x, y) - f(t, u, v)| \leq b_1 |x - u| + b_1 |y - v|.
\]

\((vi) \) \(g : [0, T] \times \mathbb{R} \to \mathbb{R} \) is measurable in \(t \) for any \(x \in \mathbb{R} \) and satisfies the Lipschitz condition
\[
|g(t, x) - g(t, u)| \leq b_2 |x - u|.
\]

\((vii) \) \(\sup_{t \in [0,1]} \int_0^t |f(s, 0, 0)| \, ds \leq L_1 \), \(\sup_{t \in [0,1]} \int_0^t \int_0^s |g(\theta, 0)| \, d\theta \, ds \leq L_2 \).

Theorem 3. Let assumptions (v)–(vii) be satisfied, then the solution of the nonlocal problem (1)–(2) is unique.

Proof. From assumption (v) we have that \(f \) is measurable in \(t \) for any \(x, y \in \mathbb{R} \) and satisfies the Lipschitz condition, then it is continuous in \(x, y \in \mathbb{R} \) for all \(t \in [0, 1] \), and
\[
|f(t, x, y)| \leq b_1 |x| + b_1 |y| + |f(t, 0, 0)|.
\]

Condition (i) is satisfied. Also by the same way we can show that assumption (ii) satisfied by assumption (vi). Now, from Theorem 1 the solution of the nonlocal problem (1)–(2) exists.

Let \(x, y \) be two the solution of (1)–(2), then
\[
|x(t) - y(t)| = \left| B^{-1} \left[- \sum_{k=1}^{m} a_k \int_0^{\tau_k} f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \, ds \right]
\]
\[
+ \int_0^t f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \, ds
\]
\[
- B^{-1} \left[- \sum_{k=1}^{m} a_k \int_0^{\tau_k} f \left(s, y(s), \int_0^s g(\theta, y(\theta)) \, d\theta \right) \, ds \right]
\]
\[
- \int_0^t f \left(s, y(s), \int_0^s g(\theta, y(\theta)) \, d\theta \right) \, ds \right|.
\]
\[\leq B^{-1} \sum_{k=1}^{m} a_k \int_0^{\tau_k} \left| f \left(s, x(s), \int_0^{s} g(\theta, x(\theta)) \, d\theta \right) \right| \, ds \\
- \left| f \left(s, y(s), \int_0^{s} g(\theta, y(\theta)) \, d\theta \right) \right| \, ds \\
+ \int_0^{t} \left| f \left(s, x(s), \int_0^{s} g(\theta, x(\theta)) \, d\theta \right) \right| \, ds - f \left(s, y(s), \int_0^{s} g(\theta, y(\theta)) \, d\theta \right) \, ds, \]

\[\leq B^{-1} \sum_{k=1}^{m} a_k \int_0^{\tau_k} \left(b_1 \| x - y \| + b_1 \int_0^{s} \left| g(\theta, x(\theta)) - g(\theta, y(\theta)) \right| \, d\theta \right) \, ds \\
+ \int_0^{t} \left(b_1 \| x - y \| + b_1 \int_0^{s} \left| g(\theta, x(\theta)) - g(\theta, y(\theta)) \right| \, d\theta \right) \, ds \\
\leq b_1 \| x - y \| + \frac{1}{2} b_1 b_2 \| x - y \| + b_1 \| x - y \| + \frac{1}{2} b_1 b_2 \| x - y \| \\
= (2b_1 + b_1 b_2) \| x - y \|. \]

Hence,

\[(1 - 2b_1 + b_1 b_2) \| x - y \| \leq 0. \]

Since \((2b_1 + b_1 b_2) < 1\), then \(x(t) = y(t)\), and the solution of the nonlocal problem (1)–(2) is unique. \(\square\)

2.4 Continuous dependence

2.4.1 Continuous dependence on \(x_0\)

Definition 3. The solution \(x \in C[0,1]\) of the nonlocal problem (1)–(2) depends continuously on \(x_0\) if

\[\forall \epsilon > 0, \ \exists \delta(\epsilon): \ |x_0 - x_0^*| < \delta \implies \|x - x^*\| < \epsilon, \]

where \(x^*\) is the solution of the nonlocal problem

\[\frac{dx^*}{dt} = f \left(t, x^*(t), \int_0^{t} g(s, x^*(s)) \, ds \right), \ \text{a.e. } t \in (0,1), \quad (15) \]

with the nonlocal condition

\[\sum_{k=1}^{n} a_k x^*(\tau_k) = x_0^*, \ \ a_k \geq 0, \ \tau_k \in (0,1). \quad (16) \]

http://www.journals.vu.lt/nonlinear-analysis
Theorem 4. Let the assumptions of Theorem 3 be satisfied, then the solution of the nonlocal problem (1)–(2) depends continuously on x_0.

Proof. Let x, x^* be two solutions of the nonlocal problems (1)–(2) and (15)–(16), respectively. Then

$$
|x(t) - x^*(t)|
$$

$$
= \left| B^{-1} \left[x_0 - \sum_{k=1}^m a_k \int_0^{\tau_k} f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \, ds \right]
$$

$$
+ \int_0^t f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \, ds
$$

$$
- B^{-1} \left[x_0^* - \sum_{k=1}^m a_k \int_0^{\tau_k} f \left(s, x^*(s), \int_0^s g(\theta, x^*(\theta)) \, d\theta \right) \, ds \right]
$$

$$
+ \int_0^t f \left(s, x^*(s), \int_0^s g(\theta, x^*(\theta)) \, d\theta \right) \, ds
$$

$$
\leq B^{-1} |x_0 - x_0^*|
$$

$$
+ B^{-1} \sum_{k=1}^m a_k \int_0^{\tau_k} \left| f \left(s, x^*(s), \int_0^s g(\theta, x^*(\theta)) \, d\theta \right) - f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) \right| \, ds
$$

$$
+ \int_0^t \left| f \left(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta \right) - f \left(s, x^*(s), \int_0^s g(\theta, x^*(\theta)) \, d\theta \right) \right| \, ds
$$

$$
\leq B^{-1} |x_0 - x_0^*|
$$

$$
+ B^{-1} \sum_{k=1}^m a_k \int_0^{\tau_k} \left(b_1 \|x - x^*\| + b_1 \int_0^s \left| g(\theta, x^*(\theta)) - g(\theta, x(\theta)) \right| \, d\theta \right) \, ds
$$

$$
+ \int_0^t \left(b_1 \|x - x^*\| + b_1 \int_0^s \left| g(\theta, x(\theta)) - g(\theta, x^*(\theta)) \right| \, d\theta \right) \, ds
$$

$$
\leq B^{-1} |x_0 - x_0^*| + b_1 \|x - y\| + \frac{1}{2} b_1 b_2 \|x - x^*\| + b_1 \|x - x^*\|
$$

$$
+ \frac{1}{2} b_1 b_2 \|x - x^*\|
$$

$$
\leq B^{-1} \delta + (2b_1 + b_1 b_2) \|x - x^*\|.
$$
Hence,

\[\| x - x^* \| \leq \frac{B^{-1}\delta}{[1 - (2b_1 + b_1b_2)]} = \epsilon. \]

This means that the solution of the nonlocal problem (1)–(2) depends continuously on \(x_0 \).

The proof is completed. \(\square \)

2.4.2 Continuous dependence on \(a_k \)

Definition 4. The solution \(x \in C[0, 1] \) of the nonlocal problem (1)–(2) depends continuously on \(a_k \) if

\[\forall \epsilon > 0, \exists \delta(\epsilon): |a_k - a_k^*| < \delta \implies \| x - x^* \| < \epsilon, \]

where \(x^* \) is the solution of the nonlocal problem

\[\frac{dx^*}{dt} = f(t, x^*(t), \int_0^t g(s, x^*(s)) \, ds), \quad \text{a.e. } t \in (0, 1), \quad (17) \]

with the nonlocal condition

\[\sum_{k=1}^n a_k^* x^*(\tau_k) = x_0, \quad a_k \geq 0, \quad \tau_k \in (0, 1). \quad (18) \]

Theorem 5. Let the assumptions of Theorem 3 be satisfied, then the solution of the nonlocal problem (1)–(2) depends continuously on \(a_k \).

Proof. Let \(B^* = \sum_{k=1}^n a_k^* \neq 0 \), and let \(x, x^* \) be two solutions of the nonlocal problems (1)–(2) and (17)–(18), respectively. Then

\[
\begin{align*}
| x(t) - x^*(t) | &= B^{-1} \left[x_0 - \sum_{k=1}^n a_k \int_0^{\tau_k} f(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta) \, ds \right] \\
&\quad + \int_0^t f(s, x(s), \int_0^s g(\theta, x(\theta)) \, d\theta) \, ds \\
&\quad - B^{*-1} \left[x_0 - \sum_{k=1}^n a_k^* \int_0^{\tau_k} f(s, x^*(s), \int_0^s g(\theta, x^*(\theta)) \, d\theta) \, ds \right] \\
&\quad - \int_0^t f(s, x^*(s), \int_0^s g(\theta, x^*(\theta)) \, d\theta) \, ds \\
\end{align*}
\]
Infinite point and Riemann–Stieltjes integral conditions for an integro-differential equation

\[\begin{align*}
\leq B^{-1}B^{-1}m\delta x_0 \\
&+ B^{-1}\sum_{k=1}^{m} a_k^* \int_0^\tau_k \left| f \left(s, x^* (s), \int_0^s g (\theta, x^* (s)) \, d\theta \right) \right| \\
&+ B^{-1}\sum_{k=1}^{m} |a_k^* - a_k| \int_0^\tau_k \left| f \left(s, x(s), \int_0^s g (\theta, x(s)) \, d\theta \right) \right| \\
&+ B^{-1}B^{-1}m\delta x_0 + (2b_1 + b_1 b_2)\|x - x^*\| \\
&+ B^{-1}m\delta (2b_1 \|x\| + b_1 b_2 \|x\| + 2L_1 + 2b_1 L_2).
\end{align*} \]

Hence,

\[\|x - x^*\| \leq \frac{m\delta x_0 + m\delta B((2b_1 + b_1 b_2)\|x\| + 2L_1 + 2b_1 L_2)}{1 - (2b_1 + b_1 b_2)BB^*} = \epsilon. \]

This means that the solution of the nonlocal problem (1)–(2) depends continuously on \(a_k\).

The proof is completed. \(\square\)

2.4.3 Continuous dependence on the function \(g\)

Definition 5. The solution \(x \in C[0, 1]\) of the nonlocal problem (1)–(2) depends continuously on the function \(g\) if

\[\forall \epsilon > 0, \exists \delta (\epsilon) : \|g - g^\ast\| < \delta \implies \|x - x^\ast\| < \epsilon, \]

where \(x^\ast\) is the solution of the nonlocal problem

\[\frac{dx^\ast}{dt} = f \left(t, x^\ast (t), \int_0^t g^\ast (s, x^\ast (s)) \, ds (s, x^\ast (s)) \right), \text{ a.e. } t \in (0, 1), \quad (19) \]

with the nonlocal condition

\[\sum_{k=1}^{n} a_k x^\ast (\tau_k) = x_0, \quad a_k \geq 0, \quad \tau_k \in (0, 1). \quad (20) \]

Theorem 6. Let the assumptions of Theorem 3 be satisfied, then the solution of the nonlocal problem (1)–(2) depends continuously on the function \(g\).
Proof. Let \(x, x^* \) be two solutions of the nonlocal problem (1)–(2) and (19)–(20), respectively. Then

\[
|x(t) - x^*(t)| = | B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_0^t f(s, x(s), \int_0^s g(\theta, x(\theta)) d\theta) \right] ds \\
+ \int_0^t f(s, x(s), \int_0^s g(\theta, x(\theta)) d\theta) ds \\
- B^{-1} \left[x_0 - \sum_{k=1}^{m} a_k \int_0^t f(s, x^*(s), \int_0^s g^*(\theta, x^*(\theta)) d\theta) \right] ds \\
- \int_0^t f(s, x^*(s), \int_0^s g^*(\theta, x^*(\theta)) d\theta) ds \\
\leq B^{-1} \sum_{k=1}^{m} a_k \int_0^t \left| f(s, x^*(s), \int_0^s g^*(\theta, x^*(\theta)) d\theta) - f(s, x(s), \int_0^s g(\theta, x(\theta)) d\theta) \right| ds \\
+ \int_0^t \left| f(s, x(s), \int_0^s g(\theta, x(\theta)) d\theta) - f(s, x^*(s), \int_0^s g^*(\theta, x^*(\theta)) d\theta) \right| ds,
\]

\[
\leq B^{-1} \sum_{k=1}^{m} a_k \int_0^t \left(b_1 \| x - x^* \| + b_1 \int_0^s \left| g^*(\theta, x^*(\theta)) - g(\theta, x(\theta)) \right| d\theta \right) ds \\
+ \int_0^t \left(b_1 \| x - x^* \| + b_1 \int_0^s \left| g^*(\theta, x^*(\theta)) - g^*(\theta, x^*(\theta)) \right| d\theta \right) ds \\
\leq b_1 \| x - x^* \| + b_1 \| x - x^* \| + b_1 \| x - x^* \| + \frac{1}{2} b_1 \| x - x^* \| + b_1 \| x - x^* \| \\
+ \frac{1}{2} b_1 b_2 \| x - x^* \| \\
\leq b_1 \delta + (2b_1 + b_1 b_2) \| x - x^* \|.
\]

Hence,

\[
\| x - x^* \| \leq \frac{b_1 \delta}{1 - (2b_1 + b_1 b_2) \sum_{k=1}^{m} a_k} = \epsilon.
\]

This means that the solution of the nonlocal problem (1)–(2) depends continuously on the function \(g \). The proof is completed.

\[\text{http://www.journals.vu.lt/nonlinear-analysis} \]
2.5 Nonlocal Riemann–Stieltjes integral condition

Let \(x \in C[0, 1] \) be the solution of the nonlocal problem (1)–(2). Let \(a_k = g(t_k) - g(t_{k-1}) \), \(g \) is increasing function, \(\tau_k \in (t_{k-1}, t_k) \), \(0 = t_0 < t_1 < t_2 \cdots < t_m = 1 \), then, as \(m \to \infty \), the nonlocal condition (2) will be

\[
\sum_{k=1}^{m} g(t_k) - g(t_{k-1}) x(\tau_k) = x_0
\]

and

\[
\lim_{m \to \infty} \sum_{k=1}^{m} g(t_k) - g(t_{k-1}) x(\tau_k) = \int_{0}^{1} x(s) \, dg(s) = x_0.
\]

Theorem 7. Let assumptions (i)–(iv) be satisfied, then the nonlocal problem of (1)–(3) has at least one solution.

Proof. As \(m \to \infty \), the solution of the nonlocal problem (1)–(2) will be

\[
x(t) = \lim_{m \to \infty} \frac{1}{\sum_{k=1}^{m} a_k} \left[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds \right]
\]

\[
+ \int_{0}^{t} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds
\]

\[
= \frac{1}{g(1) - g(0)} \left[x_0 - \lim_{m \to \infty} \sum_{k=1}^{m} a_k \int_{0}^{\tau_k} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds \left(g(t_k) - g(t_{k-1}) \right) \right]
\]

\[
+ \int_{0}^{t} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds
\]

\[
= \frac{1}{g(1) - g(0)} \left[x_0 - \frac{1}{t} \int_{0}^{t} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds \, dt \right]
\]

\[
+ \int_{0}^{t} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds.
\]

2.6 Infinite-point boundary condition

Theorem 8. Let assumptions (i)–(iv) be satisfied, then the nonlocal problem of (1)–(4) has at least one solution.

Proof. Let the assumptions of Theorem 1 be satisfied, and let \(\sum_{k=1}^{m} a_k \) be convergent, then

\[
x_m(t) = \frac{1}{\sum_{k=1}^{m} a_k} \left[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{t} f\left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) d\theta\right) ds \right] + \int_{0}^{t} f\left(s, x_m(s), \int_{0}^{s} g(\theta, x_m(\theta)) d\theta\right) ds.
\]

Taking the limit to (21) as \(m \to \infty \), we have

\[
\lim_{m \to \infty} x_m(t) = \lim_{n \to \infty} \left[x_0 - \sum_{k=1}^{m} a_k \int_{0}^{t} f\left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) d\theta\right) ds \right] + \int_{0}^{t} f\left(s, x_m(s), \int_{0}^{s} g(\theta, x_m(\theta)) d\theta\right) ds.
\]

(21)

Now, \(|a_k\tau_k| \leq |a_k||x|\), then by comparison test \(\sum_{k=1}^{\infty} a_k x(\tau_k) \) is convergent.

Also

\[
\left| \int_{0}^{\tau_k} f\left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) d\theta\right) ds \right|
\]

\[
\leq \int_{0}^{\tau_k} \left(c_1(s) + b_1 |x(s)| + b_1 \int_{0}^{s} g(\theta, x(\theta)) d\theta\right) ds
\]

\[
\leq \int_{0}^{\tau_k} \left(c_1(s) + b_1 |x(s)| + b_1 \left(c_2(s) + b_2 |x(s)|\right) d\theta\right) ds
\]

\[
\leq M_1 + b_1 ||x|| + b_1 M_2 + \frac{1}{2} b_1 b_2 ||x|| \leq M,
\]

then

\[
|a_k| \int_{0}^{\tau_k} f\left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) d\theta\right) ds \leq |a_k|M,
\]

and by the comparison test \(\sum_{k=1}^{\infty} a_k \int_{0}^{\tau_k} f(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) d\theta) ds \) is convergent.

http://www.journals.vu.lt/nonlinear-analysis
Now, $|f| \leq |c_1(s) + b_1\|x\| + b_1 M_2 + b_1 b_2\|x\|$, using assumptions (i)–(ii) and Lebesgue dominated convergence theorem [13], from (22) we obtain

$$x(t) = \frac{1}{\sum_{k=1}^{\infty} a_k} \left[x_0 - \sum_{k=1}^{\infty} a_k \int_{0}^{t} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds \right]$$

$$+ \int_{0}^{t} f \left(s, x(s), \int_{0}^{s} g(\theta, x(\theta)) \, d\theta \right) \, ds.$$

The theorem proved.

3 Examples

In this section, we offer some examples to illustrate our results.

Example 1. Consider the following nonlinear integro-differential equation:

$$\frac{dx}{dt} = t^3 e^{-t} + \frac{\ln(1 + |x(t)|)}{3 + t^2}$$

$$+ \int_{0}^{t} \frac{1}{9} \left(\cos(3s + 3) + s^5 \cos x(s) + e^{-s} x(s) \right) \, dt,$$

a.e. $t \in (0, 1), \quad (23)$

with infinite point boundary condition

$$\sum_{k=1}^{\infty} \frac{1}{k^5} x \left(\frac{k-1}{k} \right) = x_0. \quad (24)$$

Set

$$f \left(t, x(t), \int_{0}^{t} g(s, x(s)) \, ds \right)$$

$$= t^3 e^{-t} + \frac{\ln(1 + |x(t)|)}{3 + t^2} + \frac{1}{9} \int_{0}^{t} \left(\cos(3s + 3) + s^5 \cos x(s) + e^{-s} x(s) \right) \, dt.$$

Then

$$\left| f \left(t, x(t), \int_{0}^{t} g(s, x(s)) \, ds \right) \right|$$

$$\leq t^3 e^{-t} + \frac{1}{3} \left(|x| + \frac{1}{3} \int_{0}^{t} \left(\cos(3s + 3) + s^5 \cos x(s) + e^{-s} x(s) \right) \, dt \right),$$

and also

$$|g(s, x(s))| \leq \frac{1}{3} |\cos(3s + 3)| + \frac{2}{3} |x(s)|.$$
It is clear that assumptions (i)–(iv) of Theorem 1 are satisfied with \(c_1(t) = t^3 e^{-t} \in L^1[0, 1] \),
\(c_2(t) = \frac{|\cos(3t + 3)|}{2} \in L^1[0, 1] \), \(b_1 = 1/3 \), \(b_2 = 2/3 \), \(b_1 b_2 = 2/3 + 2/9 = 8/9 < 1 \), and the series \(\sum_{k=1}^{\infty} 1/k^3 \), is convergent. Therefore, by applying to Theorem 1 the given nonlocal problem (23)–(24) has a continuous solution.

Example 2. Consider the following nonlinear integro-differential equation:

\[
\frac{dx}{dt} = t^3 + t + 1 + \frac{x(t)}{\sqrt{t + 3}} + \int_0^t \frac{1}{4} \left(\sin^2(3s + 3) + \frac{sx(s)}{2s(1 + x(s))} \right) dt, \quad \text{a.e. } t \in (0, 1),
\]

(25)

with infinite point boundary condition

\[
\sum_{k=1}^{\infty} \frac{1}{k^3} x \left(\frac{k^2 + k - 1}{k^2 + k} \right) = x_0.
\]

(26)

Set

\[
f \left(t, x(t), \int_0^t g(s, x(s)) \, ds \right)
\]

\[
= t^3 + t + 1 + \frac{x(t)}{\sqrt{2t + 4}} + \frac{1}{4} \int_0^t \left(\sin^2(3s + 3) + \frac{sx(s)}{2s(1 + x(s))} \right) \, dt.
\]

Then

\[
\left| f \left(t, x(t), \int_0^t g(s, x(s)) \, ds \right) \right| \leq t^3 + t + 1 + \frac{3}{3} |x| + \frac{1}{3} \int_0^t \left| \sin^2(3s + 3) + \frac{sx(s)}{2s(1 + x(s))} \right| \, dt,
\]

and also

\[
|g(s, x(s))| \leq \frac{3}{4} \left| \sin^2(3s + 3) \right| + \frac{3}{8} |x(s)|.
\]

It is clear that the assumptions (i)–(iv) of Theorem 1 are satisfied with \(c_1(t) = t^3 + t + 1 \in L^1[0, 1] \),
\(c_2(t) = (3/4)(\sin^2(3s + 3)) \in L^1[0, 1] \), \(b_1 = 1/3 \), \(b_2 = 3/8 \), \(2b_1 + b_1 b_2 = 2/3 + 1/8 = 19/24 < 1 \), and the series \(\sum_{k=1}^{\infty} 1/k^3 \), is convergent. Therefore, by applying to Theorem 1 the given nonlocal problem (25)–(26) has a continuous solution.
References

