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The optimal fi nancial investment (Portfolio) problem was investigated by leading fi nancial organiza-
tions and scientists. The aim of these works was to defi ne the optimal diversifi cation of the assets 
depending on the acceptable risk level.
The aim of the paper is to evaluate different investment strategies in the real and virtual fi nancial mar-
kets. This aim is the new element of the proposed simulation system since optimization is performed 
in the space of investment strategies; both daily and long-term. A number of different investment 
strategies are presented, including the ones based on the Modern Portfolio Theory (MPT).
The simulated investment procedures include different prediction methods. The methods that mini-
mize the mean absolute error (MAE) are added to the traditional ones that minimize the least squares 
error (MSE). The results of the virtual fi nancial market are compared with historical data.
The model is designed as a tool to represent the behavior of an individual investor which wants to 
predict how the expected profi t depends on different investment strategies using different forecasting 
methods of real and virtual stocks.

Introduction

The traditional approach is represented by 
the Modern Portfolio Theory (MPT). MPT was 
created by Harry Markowitz (1959) and William 
Forsyth Sharpe (1994). A number of invest-
ment organizations are making decisions using 
the software based on the theoretical results of 

Robert C. Merton and Myron S. Scholes (1972). 
The recent developments and applications of 
MPT are discussed in (Jack Clark Francis, 2013; 
Baker and Filbeck, 2013; Sortino, 2009). Some 
limitations of this theory have been noticed dur-
ing the recent fi nancial crisis when the inves-
tors experienced considerable losses (Krugman, 
2009).
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Financial market simulators are developed 
to satisfy the needs of small individual inves-
tors. The examples are the StockTrak global 
portfolio simulator, the MarketWatch, virtual 
stock exchange“, and the „Stock Simulator“ of 
Investopedia. Some banks offer their own invest-
ment simulators such as the Barclays Fantasy 
Investment Game. Users of these simulators 
working with „Virtual Stocks“ are informed 
about the results. The graphical user interfaces 
are friendly. However, the theoretical basis of 
these models and computing algorithms remains 
unknown. So the users cannot grasp the reasons 
why they win and why they experience losses.

To present the individual stockholders with a 
tool where everything is open is one of the aims 
of the PORTFOLIO model introduced in this 
paper. To accomplish this task, we deviate from 
the traditional portfolio models since this model 
is for defi ning the best investment strategies but 
not just the best diversifi cation of assets what is a 
new element of this work.

In contrast to well-known results, this work 
not only simulates traditional results of utility and 
portfolio theories, but also complements them by 
various investment procedures and renders a pos-
sibility to users to develop and implement their 
own investment strategies.

Thus, the model can be useful to studies, to 
scientifi c collaboration, and to stockholders who 
are solving optimal investment problems and re-
gard risk in an individual way. The market pre-
diction and portfolio optimization were regarded 
in most of the fi nancial market research. The in-
vestigation of different investment strategies is 
the feature of this work.

In Mockus and Raudys (2010);  Mockus (2012), 
a preliminary investigation of the virtual stock ex-
change of a single stock is discussed. The results of 
these papers helped to initiate this work that simu-
lates the optimal investment problem in the multi-
stock market. Therefore we just refer to paper of 
Mockus (2012) for a mathematical description of 
the singe stock model and describe mainly the new 
resultas of experimental investigation. However, 
some defi nitions and expressions that describe the 
buying-selling strategies and investors‘ profi t are 
repeated for convenience of reading.

1. The PORTFOLIO Model of a Virtual 
Financial Market
1.1 Buying and Selling Strategies

We consider a virtual market of I major 
players Ii ,...,1=  and Jj ,...,1=  stocks. The 
following notation is used:

),,(),( jitzjtz =  is the price of stock j  at 
time t , predicted by the player i ,

),( jtZ  is the actual* price at time t ,
),,(),( jitUjtU =  is the actual profi t accu-

mulated at time t  by the player i  buying-selling 
stock j,

),( jtδ  is the dividend of stock j  at time t ,
)(tα  is the yield at time t ,
)(tγ  is the interest rate at time t ,

)()()( ttth αγ −=  is the haircut**,
),( itβ  is the relative stock price change at 

time t  as predicted by the player i
,),(/)),(),,1((),,( jtZjtZjitzjit −+=β  (1)

Expected profi tability*** (relative profi t)  
),,( jitp  of an investment at time t  depends 

on the predicted change of stock prices ),( jtiβ , 
dividends ),( jtiδ , the bank rate )(tα , and hair-
cut )(th

)()()(),,(),,( thttjitjitp δαβ =−+−=

 .)()(),( ttjt γδβ −+=
 
 (2)

The aim is profi t, thus a customer i  will buy 
some amount ),(),,( jtnjitnb ≥  of stocks j , if 
profi tability is greater comparing with the rela-
tive transaction cost ),( ntτ ; ),(),,( ntjitp τ> , 
and will sell stocks, if the relative loss (negative 
profi tability ),,( jitp− ) is greater as compared 
with the transaction cost ),(),,( ntjitp τ−< , or 
will do nothing, if ),(),,(),( ntjitpnt ττ ≤≤− . 
Here the relative transaction cost is defi ned as 
the relation 

,
),(),(

),( 0

jtZjtn
nt ττ =  (3)

* The term ‘actual’ means simulated
** In fi nance, a haircut is a part that is subtracted from the 
value of the assets that are being used as collateral. The size 
of the haircut refl ects the perceived risk associated with hol-
ding the assets.
*** The term “profi t” can defi ne losses if negative terms 
prevail.
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where 0τ  is the actual transaction cost and  
),( jtnn =  is the number of transaction stocks.  

It follows from the equality ),,(),( jitpnt =τ   
that the minimal number of stocks to cover 
transaction expenses is 

.
),(),,(

),( 0

jtZjitp
jtn τ=  (4)

Therefore, the buying-selling strategy ),,( jitS  
of stock j  by the customer i  at time  t  in terms 
of profi tability levels is as follows
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Here ),max( maxmaxmax
sb nnn = , where max

bn  is 
the maximal number of stocks to buy, and  max

sn  
is the maximal number of stocks to sell.

If ,),,(),,( maxmax
ssbb njitnandnjitn ==  (6)

then this buying/selling strategy refl ects the be-
havior of  risk-neutral stockholders which invest 
all available resources if the expected profi tabil-
ity is higher than the transaction cost. If the ex-
pected losses are greater, then all the stocks are 
sold. It means that stockholders may tolerate a 
considerable probability of losses, if the expect-
ed profi ts are positive. In this way, the maximal 
expected profi t is provided. However, the prob-
ability to get losses instead of profi ts could be 
near to 0.5.

From expressions (1) and (2), the buying-
selling strategy ),,( jitS  in terms of stock price 
levels is 
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Here the price level of the player i  to buy at 

least ),( jtnn =  stocks at time t  is 

)).,()()(
)(1(/),,1(),,,(

nttht
tjitzjintzb

τα
δ

+++
+−+=

 (8)

The price level of the player i  to sell at least 
),( jtnn =  stocks at time t  is 

)),,()()(
)(1(/),,1(),,,(

nttht
tjitzjintzs

τα
δ

−++
+−+=

 (9)

where ),,1( jitz +  is the stock j  price predicted 
by the investor i  at time 1+t  .

The market buying price at time t  is the 
largest buying price of players Ii ,...,1=  

),,,(),( maxjintzntz bb = ,
where

),,,(maxargmax jintzi bi= . 
The market selling price at time t is the low-

est selling price of players Ii ,...,1=
),,,(),( minjintzntz ss = ,

.),,,(minargmin jintzi si=   

1.2 Price Simulation

1.2.1 Buying-selling price

The market buying price of stock j  at time t   
is the largest buying price of players Ii ,...,1=

),,,(),,( maxjintzjntz bb = ,
where

),,,(maxargmax jintzi bi= .
The market selling price at time t  is the low-

est selling price of players Ii ,...,1=  
),,,(),,( minjintzjntz ss = ,

.),,,(minargmin jintzi si=   
The number of stocks j  owned by the play-

er i  at time 1+t  is 
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Here ),,,( jintnb and ),,( jitns  are the num-
bers of stocks j for buying and selling operations 
by the player i  at time t .

(5)

(7) (10)
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1.3 Investors Profi t
The product ),0(),,0( jZjiN  is the initial 

investment to buy ),,0( jiN  shares j  using an in-
vestors‘ own capital at the initial price ),0( jZ . 
The initial funds to invest are ),0(0 iC  and the 
initial credit limit is ),0( iL . TtitL ,...,1,),( =  is 
the credit available for a customer i  at time t . 
The investors‘ own funds in cash ),(0 itC  avail-
able for investing at time t  are defi ned by the 
recurrent expression 

,),()),,1(

),,((),1(),( 00

jtZjitN

jitNitCitC
j

−−

−−−= ∑
 (11)

where Tt ,...,1= . Here the product 
),()),,1(),,(( jtZjitNjitN −−

defi nes the money involved in buying-selling 
stocks.

Stocks are obtained using both investor‘s 
own money ),(0 itC  and the funds ),( itb  
borrowed at the moment t. The borrowed sum 
of the stockholder i  accumulated at time t  is 

)),,(),(
1

isbitB
t

s
∑

=

=  (12)

The symbol ),( itb  shows what the user i  
borrows at the moment t  

Part of Profi t by Stock j  
In long-term investment strategies using 

the Sharpe ratio, the general profi t should be 
divided between different stocks. Denote by  

),,0(),,0(0 jiLjiC ≤  the initial funds to be in-
vested in the stock Jj ,...,1= , where ),,0( jiL  
is the initial credit limit for stock j  and 

),0(),,0( iLjiL
j

=∑  (13)

For example, the initial funds may be divid-
ed into equal parts 

JiCjiC
j

/),0(),,0( 00 =∑  (14)

The investors’ own funds in cash ),,(0 jitC , 
accumulated buying-selling stocks j  and avail-
able for investing at time t   in the stock j, are 
defi ned by the recurrent expression below 

,),()),,1(
),,((),,1(),,( 00

jtZjitN
jitNjitCjitC

−−
−−−=

 (15)

where Tt ,...,1= . Here the product
),()),,1(),,(( jtZjitNjitN −−  

defi nes the money involved in buying-selling 
stocks. j

Stocks are obtained using both investors‘ 
own money ),,(0 jitC  and the funds ),,( jitb  
borrowed at the moment t . The borrowed sum 
of the stockholder i  for the stock j  accumu-
lated at time t  is 

)),,,(),,(
1

jisbjitB
t

s
∑

=

=  (16)

where 
),(),,( itBjitB

j

=∑  (17)

 The symbol ),,( jitb  shows what the user i  
borrows at the moment t  for the stock j.

The general borrowing expenses for stock j are 

)),,()),,(),,(),,(
1

isjisBjitBjitB
t

s
sum γ∑

=

+=
 
(18)

where the fi rst term denotes the loan accumulated 
at time t , the second term shows the interest, and 

.),(),,( itBjitB sumsum
j

=∑  (19)

The investor i  gets a profi t as the difference 
between the income from selling and buying 
stocks ),,( jitD  and expenses for the borrowing 
funds ),,( jitBsum   

,),,(),,(),,(),,( 0 jitBjitDjitCjitU sum−+=  (20)
where 

,),0(),,0(),(),,(),,( jZjiNjtZjitNjitD −=  (21)
The investor‘s i  profi t from the stock j  at 

the end of investment period is denoted as 
,).,(. jiTUU ji =  (22)

where 

,. iji
j

UU =∑  (23)

If for some reason equalities (17), (19), and 
(23) are violated, then the normalization of 
components may be applied to restore them.. 
the funds invested in buying stocks j  at time 
T . =jx  The bank profi t expressions are the 
same as in the single stock market model of 
Mockus (2012).
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1.4 Multi-Level Operations
1.4.1 Strategy No. 1, ordinary stockholder: 
selling and buying by profi tability levels

In the opinion of some professional brokers we 
have interviewed, one needs at least three buying 
profi tability levels 3,2,1,),,,( =lljitpb , where 

,)()1,,,(,),,,()1,,,( tjitpljitpljitp bbb τ=>+  (24)
and three selling profi tability levels 

3,2,1,),,,( =lljitps , where 

,)1,,,(),,,(
,)()1,,,(,),,,()1,,,(

jitpljitp
tjitpljitpljitp

sb

sss

>
−=<+ τ

to explain the behavior of major stockholders. 
The level 1=l  means to buy-sell the minimal 
number of stocks. The level 3=l  means to buy-
sell as much stocks as possible, and the level 

2=l  is in the middle. Details of multi-level op-
erations are in Mockus (2012).

2. Price Prediction

In this model, two versions of Autoregressive 
(AR(p)) and two versions of Autoregressive 
Moving Average (ARMA(p,q)) models are consid-
ered for stock rate predictions. The fi rst versions – 
AR(p) and ARMA(p,q) – use traditional least 
squared approach, the second ones – AR-ABS(p) 
and ARMA-ABS(p,q) – minimize the absolute 
errors. The development and implementation of 
ARMA-ABS(p,q) is a new feature of this work.

The actual price of a stock at time 1+t  is de-
fi ned as the price of the previous deal of major 
stockholders plus the truncated Gaussian noise 
that represents the remaining small stockholders. 
Thus, the actual stock j  price at time 1+t  deter-
mined by buying-selling operations of the stock-
holder i  is as follows
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(25)

Here a refl ects the market inertia, where a = 0 
means there is no inertia and a = 1 describes max-
imal inertia (no market reaction to the last deal).

2.0.2 Strategy No. 2, risk-aware stockholders: 
selling all unprofi table stocks – buying the best 
ones

First, the stockholder i  sells all the non-
profi table stocks 

,),,(),,( jitjitps τ−≤  (27)
and then invests all the available funds to buy the 
most profi table stock. The stockholder i  does 
not sell the stock j , if the expected loss is small-
er than the transaction cost ),,(|),,(| jitjitp τ< .

This selling strategy refl ects risk-aware users 
which keep  some less profi table stocks to avoid 
possible losses if predictions happen to be wrong.

2.0.3 Strategy No. 3, risk-neutral stockholders: 
buying the best stocks and selling all the rest

The risk-neutral stockholders use all avail-
able resources to buy the stock maxj  which pro-
vides the highest expected profi t: 

,),,(maxargmax jitpj
j

=  (28)

2.0.4 Strategy No. 4, risk-averse stockholders: 
selling and buying in proportion to profi tability

Denote by +J  a set of stocks with a positive 
profi tability and by −J  the stocks with a negative 
profi tability. Denote || += JJb  and || −= JJs . 

,),,(maxargmax jitpj
Jj +∈+ =  (29)

and 
.),,(minargmin jitpj

Jj −∈− =  (30)

First, we sell stocks in proportion to min,...,1 −= jl  
selling profi tability levels ,),,(),,( == ljitplitps  

(26)
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min,...,1 −= jl . Then we use all accumulated resour-
ces to buy stocks in proportion to max,...,1 += jl  
profi tability levels

max,...,1,),,(),,( −=== jlljitplitpb  .
Strategy No. 5, Long Term Investment

In the previous sections, we analyzed short-
term investing by daily decisions using different 
investment strategies. So, the search was in the 
strategy space.  In this section, we consider the 
maximization the Sharp Ratio (Sharpe (1994)).

In the long term investing models, the time 
series are split into learning and testing sets. 
In the learning stage, the mean and variance 
of portfolio )(xP  profi t are estimated using 
the fi rst part of observations Tt <≤ 01 , where 

),...,1,( Jjxx j == . Usually 0t  is about 2/T . 
and the initial funds are equally divided among 
the stocks, meaning that JCx j /)0(0

0 = . Here 
)0(0C  denotes initial funds of a single user. 

Note that in virtual markets, the stock prices 
are generated by the interaction of different vir-
tual investors. The search for the optimal dis-
tribution of funds is performed by maximizing 
the Sharpe Ratio. During the testing stage the 
profi ts of optimized portfolios are calculated us-
ing the remaining observations Tsts ≤<0: .

The data of the learning stage are used to esti-
mate average deviations and variances. The sam-
ple mean of portfolio )(xP  that contains stocks 
with weights Jjx j ,...,1, =  is as follows 
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Here ),( jtU  follows from (20) by omitting 
the investor‘s index i . The estimator of variance 
of the portfolio )(xP  is 
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We maximize the Sharpe ratio in this spe-
cifi c form 

,
)(
)(max

xs
xm

u

u

x

 (33)

because the risk free asset is regarded separately. 

3. Experimental Results

The general aim of the experiments is to eva-
luate the profi tability of different investment stra-
tegies in both the virtual and real markets, which 
involve well-known companies. In the experi-
ments, the profi ts and average prediction errors 
of eight players by four different investmrnt stra-
tegies using eight prediction models each: AR(1), 
AR(3), AR(6), AR(9), AR – ABS(1), AR – ABS(3), 
AR – ABS(6), and  AR – ABS(9) were tested. The 
time period is 360 days (virtual working days). 
This represents approximately 18 months of real 
time. The average daily and fi nal values are esti-
mated by 100 samples. Four investment strategies 
were tested in both the virtual and real environ-
ment including eight stocks of major companies.

3.1 Historical and Virtual Data
In this section, different investment strate-

gies are investigated using historical data ob-
tained automatically using the Yahoo data base. 
The historical prices of the following eight 
stocks were used: Microsoft (MSFT), Apple 
(AAPL), Google (GOOG), Nokia (NOK), 
Toyota (TM), Bank-of-America (BAC), Boeing 
(BA), and Oracle (ORCL). The time series cov-
ers about two years of rapid fi nancial develop-
ment (2008–2009) and include stocks eight ma-
jor fi nancial and technological organizations.

According to Figure 2, the maximal profi t 
of $20,000 was achieved using the fi rst strategy 
by the prediction model AR(6). Figure 1 shows 
average profi ts of eight prediction models by the 
fi rst strategy using virtual data. 

F i g.  1. Average profi ts of eight prediction models 
by the fi rst strategy using virtual data
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F i g.  2. Average profi ts of eight prediction models 
by the fi rst strategy using historical data F i g.  3. Aaverage prediction errors using different 

prediction models

Figure 2 shows average profi ts of eight pre-
diction models by the fi rst strategy using his-
torical data. Comparing Figures 1 and 2 shows 
that the profi ts and their distribution between 
different prediction models are different in real 
and virtual markets. The  explanation is that the 
real data represent mainly the post-crisis period  
with gradual recovery of stock prices. In con-
trast, the virtual data were obtained assuming 
stable general conditions. However, a two year 
cycle of stock prices and profi ts was observed, 
in some experiments. 

3.1.1 The Best Investment Strategy
Figure 3 shows average prediction errors us-

ing different prediction models. Figure 4 shows 
the most profi table portfolio defi ned using the 
fi rst strategy and AR(6) prediction model. The 
dominant stock vas Banc-of-America (No.6), 
the second one was Oracle (No. 8) followed by 
Microsoft (No. 1). 

The success of BAC can be explained by the 
rapid recovery of its stocks after the deep fall 
during depression. 

Comparing average errors in Figures aapl-
price.eps with profi ts in Figure prof-days-h1.eps 
we see that the minimal prediction error is pro-
vided by the model AR(1) and the maximal prof-
its are achieved using the AR(6) model. This and 
other experiments indicate that minimal predic-
tion errors do not necessarily provide maximal 
profi ts.

4. Concluding Remarks

The Game Theory is a suitable framework 
to model fi nancial markets because the future 
market price of fi nancial assets depends on pre-
dictions (and subsequent actions) of the market 
participants with confl icting interests. 

The proposed fi nancial market model  
PORTFOLIO is designed as a tool for simulat-
ing market processes in response to different 
changes of market parameters and for estimating 
the expected profi ts of different investment strat-
egies using both the virtual and historical data. 
Convenient user interactions are provided by im-
plementing the model as a Java applet and pub-
lishing it in an open web-site (Mockus, 2013). 

F i g.  4. The most profi table portfolio defi ned using 
the fi rst strategy and AR(6) prediction model
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A single-stock Stock Exchange Game Model 
(SEGM) was introduced in Mockus (2012) to 
simulate the behavior of several stockholders. 

Since PORTFOLIO may be too simplistic 
for practical investing, it can serve as a useful 
tool for studies of market behavior by providing 
an easy way of simulating different scenarios of 
player strategies. For example, simulations can 
explain stock market reaction to deliberately set 

non-NE strategies of a major stockholder, such 
as manipulation of asset prices, designed to low-
er their value. 

Thus, the PORTFOLIO model helps stu-
dents of business informatics to understand 
better fi nancial disasters that we are witness-
ing at present. The unexpected new result is the 
observation that the investment strategies using 
prediction models with minimal errors did not 
provide maximal profi ts.

APIE EKSPERIMENTINĮ INVESTAVIMO STRATEGIJŲ TYRIMĄ REALIOSE IR VIRTUALIOSE 
FINANSŲ RINKOSE

Jonas Mockus, Igor Katin, Joana Katina

S a n t r a u k a

Darbo tikslas yra įvertinti įvairias investavimo 
strategijas pagal jų pelningumą realiose ir virtualiose 
fi nansų rinkose.

Darbe aprašytas atnaujintas fi nansų rinkos mode-
lis, analizuojami eksperimentinių skaičiavimų rezul-
tatai.
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