
ISSN 1392-0561. INFORMACIJOS MOKSLAI. 2009 50

194

Conception of a Multi-Platform System Software and
Firmware Development Tool

Mindaugas Vidmantas
Kaunas University of Technology,
Computer Engineering Department,
PhD student
Studentų g.50, LT-51368 Kaunas, Lithuania
E-mail: minvidm@ktu.lt

Egidijus Kazanavičius
Kaunas University of Technology,
Head of Computer Engineering Department,
Prof., PhD
Studentų g.50, LT-51368 Kaunas, Lithuania
Tel. (+370 37) 30 03 86
E-mail: ekaza@ifko.ktu.lt

This article proposes a new conception of the multi-platform software and fi rmware development tool.
This conception is aimed at improving the quality as well as increasing the development productivity
in multi-platform systems. The Model Driven Architecture (MDA) offers a more effi cient software
engineering process by raising the level of abstraction. A semi-formal Unifi ed Modeling Language
(UML) and its extension Systems Modeling Language (SysML) can bring software developers to a
more formal model description, especially for real-time applications, enhancing possibilities to model
the dynamics of the software model and decomposition of the physical architecture. The illustration
of this tool conception is based on creation of a VoIP (Voice over IP) system.

1. Introduction

Nowadays many visual modeling-based
software development tools are designed for
a very specifi c target to build single applicati-
on, but not complex fi rmware. In the general
case we propose fi rmware production software
for the operating system (OS) X and hardware
architecture (HA) Y, using the Model Driven
Architecture (MDA)(OMG MDA) based on
the Systems Modeling Language (SysML) and
Unifi ed Modeling Language (UML).The latest
version of UML (2.2) (OMG UML, 2009) and
SysML (1.1) (OMG SysML 2008) now enables
us to more precisely model software for embed-
ded devices (Hause, Thom, 2008). The SysML
overcomes the limits of UML as a system mode-
ling language (Colombo, Del Bianco, Lavazza,
Coen-Porisini, 2007). The UML and SysML to-
gether with the technique of source code genera-
tion become a critical skill in a successful rapid
software and fi rmware development. We need

to admit that the general model of the proposed
system consists of two models: a model of sta-
tic structures and that of dynamic structures and
behavior. Due to lack of space, this paper does
not present the mapping of all SysML elements,
just highlights some features from SysML that
we found to be important, in this case, for VoIP
system modeling, without going deeply into the
usual UML and SysML style design and imple-
mentation details. In this paper we concentrate
mostly on modeling of static structures, presen-
ting the SysML ability to establish a relationship
between the model and mathematical algorithm
mapping. VoIP is one of many real-time sys-
tems, on which we have been working for the
past few years. Its development process needs to
be raised into a higher level of abstraction and
to develop techniques in order to improve the
quality as well as increase the development pro-
ductivity. Details of the development tool con-
ception implementation details are presented in
Chapter 3.

195

1.1. MDA

The Model-driven development promotes
the role of models, allowing developers to focus
on the essential aspects of the system. MDA mo-
dels are generally divided into three categories
(Ortiz, Bordbar, Hernandez 2008):

Platform-Independent Models (PIM),
Platform-Specifi c Models (PSM), and Code
Layer. PSM takes the responsibility of descri-
bing the functionality and behavior in one or
more particular technologies.

F i g u r e 1. MDA hierarchy

The proposed conception has a set of trans-
formation rules in order to transform PIMs into
PSMs and the latter into the fi nal application
code. Figure 1 shows MDA specifi cation, which
consists of a PIM-based SysML and a UML mo-
del, plus one or more PSMs and interface defi -
nition sets, each describing how the base model
is implemented on a different platform. Finally,
PSM is generated to a compatible language
(Java, C++ or other) source code. For PIM mo-
deling we used SysML and UML. In the VoIP
PIM case, SysML is also used for a dynamic
system model, performance simulation model,
analytical model, and a system verifi cation mo-
del. The PSM for the middle tier, which we call
the Java model, is written in a language that is
a version of UML. It uses classes, associations,
and so on, as in UML, but there is a number of
stereotypes, defi ned explicitly for the Java plat-
form.

1.2. SysML

The OMG Systems Modeling Language
(OMG SysML™) is a general purpose mode-
ling language for system engineering applica-
tions. It establishes a description pattern for a
great variety of complex systems. These sys-
tems may include hardware, software, data,
methods, people, facilities, instruments and ot-
her elements within the physical environment.
The SysML reuses a subset of UML 2 concepts
and diagrams and extends them with some new
diagrams and constructs appropriate for systems
modeling (SysML). Compared to UML 2, the
SysML has two new and three modifi ed ele-
ments (Friedenthal, Moore, Steiner 2008).

1.3. MDA Generators

The purpose of MDA generators is to provide
code generation facilities in order to keep the fo-
cus on the model itself and not on its implemen-
tation details. There are many projects based on
MDA generation (CODE GENERATION). We
chose the Eclipse Modeling Framework (Moore,
Dean, Gerber, Wagenknecht, Vanderheyden
2004), which can be used to describe and build
a model. Code generation advantages: Quality,
Consistency, Productivity, and Abstraction.

2. VoIP System development using SysML

In this chapter, we demonstrate the VoIP sys-
tem development using new SysML diagrams
for a more formal model description, enhancing
the ability to model the dynamics of a software
model and decomposition of the physical envi-
ronment. We describe models and their role in
engineering the VoIP system.

2.1. Capturing the VoIP system Specifi cation
in a Requirement Diagram

Requirements are used to describe one or
more properties or behaviors of a system that
always have to be met and defi ne the design
problem being solved at various levels of detail.
Figure 2 shows the requirements contained in

196

the VoIP specifi cation, which describes a con-
tract between all those who create the system
design and implement the system.

2.2. Defi ning the VoIP system and its External
Environment Using a Block Defi nition
Diagram

The block defi nition diagram is used to defi ne
blocks in terms of their features, and their structu-
ral relationships with other blocks and describes
parts of the structure of a related system.

Figure 3 shows VoIP System Domain ele-
ments of the VoIP System, together with the
physical environment and its users. VoIP system
creators need to implement components accor-
ding to the domain of the system.

2.3. VoIP system Context Using an Internal
Block Diagram

The internal block diagram resembles a tra-
ditional system block diagram and shows the
connections between parts of a block and lo-

oks at more detailed
structure aspects than
the block defi nition
diagram.

Figure 4 shows
the internal block
diagram of the VoIP
system fragment:
connections betwe-
en VoIP system data
input, physical envi-
ronment, echo can-
cellation system in
more detail.

F i g u r e 2. Requirement diagram showing the system requirements contained in the VoIP Specifi cation

F i g u r e 3. Block defi nition diagram of the VoIP System Domain showing the
VoIP System together with the physical environment and its users

197

2.4. VoIP System Parametric Diagram

The parametric diagram describes the relati-
ons between properties of different blocks. We
can model such relationships to integrate the
VoIP adaptive digital fi lter performance model
in the VoIP system model.

F i g u r e 5. Parametric diagram of an adaptive
digital fi lter

Figure 5 shows the parametric diagram of
an adaptive digital fi lter and systems of equa-
tions that constrain the properties of blocks of
the echo cancellation system. The constraints
are expressed as equations whose parameters
are bound to the properties of a system. The pa-
rametric diagram was created for modeling per-
formance (Buede 2009).

3. System implementation

The proposed conception of the software
development tool has a general set of graphical
modeling, control, and cross-compile structures

that overlay the functional decom-
position in the PSM (MDA) model
to capture the dynamics envisio-
ned within the system. This tool
consists of four main components:
Visual Modeling System, MDA
Generator, Parameter Observer, and
Management System. First of all,
a visual PIM has to be built using
the Visual Modeling System. When
the platform for deployment is spe-
cifi ed, MDA Generator transforms
PIM to PSM, and then according
to PSM automatically generates a

source code for appropriate OS. Figure 6 shows
the overall structure of the proposed system.

After the whole necessary source code
has been obtained, we can go over to the next
stage – automatic fi rmware creation. Figure 7
shows the general fi rmware creation structure.

As a fi rmware development platform base we
chose the Eclipse framework (ECLIPSE), which
is a highly integrated and extensible tool plat-
form. The proposed Eclipse plugin easily integra-
tes together with EMF as a modeling framework,
Graphical Editing Framework (GEF) as a graphi-
cal representation framework, and Ant (Loughran,
Hatcher, 2007) as a build tool. EMF enhances the
Meta Object Facility 2.0 (MOF (of the OMG))
Ecore model and restructures its design in a way
that is easy for the developer. We extended EMF
for PIM modeling with SysML and UML. The
VoIP project consists of many modules. Module
buildfi les are written in XML. Ant is used toget-
her with Ivy as a dependence manager. When the
dependencies of a module are resolved, it means
that Ivy has determined a complete set of depen-
dencies for all confi gurations of the module. It has
managed to locate all the artifacts, locally or re-
motely, and any associated metadata. Monitoring
and logging of the build process is performed
using Log4J (Log4J). When a fi rmware is built,
primary testing is executed by the JUnit testing
framework. After fi rmware testing, the monitoring
component, residing in the Management System,
after a few minutes delay, starts checking the state
of the fi rmware by executing scenarios and formal
proofs of correctness.

F i g u r e 4. Internal block diagram of the VoIP system fragment

198

Extension points of required libraries are
used to integrate them into the proposed plugin
in a proper way for us. It is possible to access the
plug-in extension registry using the Plaform.ge-
tExtensionRegistry() method. It contains plug-
in descriptors, each representing a plug-in. The
registry provides the following methods for ex-
tracting information about the various plug-ins
without loading them.

The VoIP project needs external libraries (VoIP
core, Voip communication and data transmission,
third-party CODECs). The parametric diagram

and related model-
ing information can
be provided for ap-
propriate simulation
and/or analysis tools
to support execu-
tion. Two integration
methods are fairly
common across all
IDEs: external tool
invocation and fi l-
tering (Herrington,
2003). The external
tools in our pro-
posal are: hardware
architecture simu-
lation tools, VoIP
Server ant MatLab.
Integration methods
are used for data
transmission, test
scenario loading

and for visualizing the collected data.

4. Conclusion and Future Work

This proposal presents a software develo-
pment tool conception, which has a high level of
abstraction of the software development (using
UML together with SysML) visual modeling tool
and can model the PIM. The rest, very complica-
ted technically, work is done automatically: PIM
transformed into PSM, after generating the source
code, and then integrated and compiled with cross-
compile tools for OS X and HA Y. Later the fi nal
fi rmware has been tested. After the test it is loaded
on the HA Y simulator. In the case of VoIP, test
scenarios with the VoIP server are executed to get
data in XML format and to analyze and visualize
the performance of the built system in MatLab by
the external tool invocation method. On demand,
the system parametric models can capture the
constraints on the properties of the system that can
then be evaluated by the same analysis tool.

Future work is to completely implement
the proposed conception of the software deve-
lopment tool and extend this tool with artifi cial
intelligence methods.

F i g u r e 6. Eclipse plugin realization scheme

F i g u r e 7. Firmware creation for OS X and HA Y
with the VoIP integrated structure

199

REFERENCES

FRIEDENTHAL Sanford; MOORE Alan; STEI-
NER Rick. (2008). A Practical Guide to SysML: The
Systems Modeling Language. Morgan Kaufmann,
2008. ISBN 0123743796.

HAUSE M.C.; THOM F.. (2008). ARTiSAN
Software Tools. In 13th IEEE International Con-
ference on Engineering of Complex Computer Sys-
tems, 2008.

OMG MDA (Model Driven Architecture). (2003).
MDA Guide Version 1.0.1. Available from http://
www.omg.org/mda. [Accessed Jun 2008].

OMG SysML (2008). OMG Systems Modeling
Language (OMG SysML) version 1.1. Available
from www.omg.org. [Accessed Jan 2009].

OMG UML (2009). OMG Unifi ed Modeling Lan-
guage (OMG UML), Infrastructure version 2.2. Avai-
lable from www.omg.org. [Accessed Mar 2009].

ORTIZ, Guadalupe; BORDBAR, Behzad; HER-
NANDEZ, Juan. (2008). Evaluating the Use of AOP
and MDA in Web Service Development. ICIW,
p. 78–83.

BUEDE, M. Dennis (2009). The Engineering De-
sign of Systems: Models and Methods. Wiley 2009.
ISBN 0470164026.

MOORE, Bill; DEAN, David; GERBER, Anna;
WAGENKNECHT Gunnar; VANDERHEYDEN,
Philippe (2004). Eclipse Development using the
Graphical Editing Framework and the Eclipse Mo-
deling Framework. IBM.

COLOMBO, Pietro; DEL BIANCO, Vieri; LA-
VAZZA, Luigi; COEN-PORISINI, Alberto (2007).
A Methodological Framework for SysML: a Problem
Frames-based Approach. 14th Asia-Pacifi c Software
Engineering Conference.

LOUGHRAN, Steve; HATCHER, Erik (2007).
Ant in Action. Manning. ISBN 1-932394-80-X

HERRINGTON, Jack (2003). Code Generation
in Action. Manning. ISBN 1-930110-97-9

ECLIPSE. http://www.eclipse.org.
CODE GENERATION. http://www.codegenera-

tion.net.
Log4J. http://logging.apache.org/log4j/1.2/index.

html

DAUGIAPLATFORMĖS PROGRAMINĖS IR SISTEMINĖS ĮRANGOS KŪRIMO PRIEMONĖS
KONCEPCIJA

Mindaugas Vidmantas, Egidijus Kazanavičius

S a n t r a u k a

Straipsnyje pateikta daugiaplatformės programi-
nės įrangos kūrimo ir integravimo į įterptinės sistemos
sisteminę įrangą (ang. fi rmware), kūrimo priemonės
koncepcija, kurios veikimo pagrindą sudaro gene-
ruojančios sistemos. Modeliavimas atliekamas pagal

MDA architektūrą, naudojant UML ir jos pagrindu
sukurtą SysML modeliavimo kalbą, kuri leidžia daug
formaliau aprašyti modeliuojamą sistemą ir jos dina-
miką. Programinės įrangos kūrimas iliustruotas balso
perdavimo IP tinklais programos pavyzdžiu.

