1964

ТЕОРИЯ ПОВЕРХНОСТЕЙ ПРОСТРАНСТВА ОБОБЩЕННОЙ ЕВКЛИДОВОЙ СВЯЗНОСТИ

В. БЛИЗНИКАС

Пространством обобщенной евклидовой связности называется обобщенное риманово пространство с аффинной связностью, относительно которой метрический тензор пространства ковариантно постоянный [3]. Общая теория таких пространств, теория кривых, теория гиперповерхностей и теория кривых на гиперповерхности построена в работах [2], [3], [4].

В этой статье строится теория *m*-мерных поверхностей и теория кривых на *m*-мерных поверхностях пространства обобщенной евклидовой связности, причем основным аппаратом исследования является метод Г. Ф. Лаптева и А. М. Васильева.

§ 1. Структурные уравнения пространства обобщенной евклидовой связности

Если с текущей точкой A(u) аналитического многообразия n измерений \mathfrak{M}_n свяжем обобщенное евклидовое пространство $H_n(u)$ с подвижным репером $\{A(u), e_1(u), \ldots, e_n(u)\}$, то получим многообразие локальных пространств $\{H_n(u)\}$. Пусть в многообразие пространств $\{H_n(u)\}$ введена обобщенно евклидовая связность, определенная отображением

$$A(u+du) \to A(u, du) = \omega^i e_i(u) + \dots,$$

$$e_i(u+du) \to e_i(u, du) = e_i(u) + \omega_i^k e_k(u) + \dots$$
(1)

$$(i, j, k=1, 2, \ldots, n; \alpha, \beta, \gamma=1, 2, \ldots, m; \hat{\alpha}, \hat{\beta}, \hat{\gamma}=m+1, \ldots, n),$$

сохраняющим скалярное произведение любой пары векторов пространства $H_n(u)$, т. е. пфаффовые формы ω_j^i и компоненты метрического тензора h_{ij} связаны соотношениями

$$\nabla h_{ij} \equiv dh_{ij} - h_{kj} \,\omega_i^k - h_{ik} \,\omega_j^k = 0. \tag{2}$$

Многообразие \mathfrak{M}_n , на котором определена обобщенно евклидовая связность, называется пространством обобщенной евклидовой связности \mathfrak{H}_n . Пфаффовые формы ω^i и ω^i_j называются формами аффинной связности этого пространства и имеют следующую структуру:

$$D\omega^{i} = [\omega^{k}, \ \omega_{k}^{i}] + R_{pq}^{i}[\omega^{p}, \ \omega^{q}],$$

$$D\omega_{j}^{i} = [\omega_{j}^{k}, \ \omega_{k}^{i}] + R_{pq}^{i}[\omega^{p}, \ \omega^{q}],$$

$$R_{pq}^{i} = 0, \quad \dot{R}_{i(pq)}^{i} = 0,$$
(3)

причем

$$h_{ik} R_{ipa}^k + h_{ki} R_{ipa}^k = 0. (4)$$

При преобразовании репера $\{A(u), e_i(u)\}$:

$$\boldsymbol{e}_{i'} = \boldsymbol{A}_{i'}^{i} \, \boldsymbol{e}_{i} \tag{5}$$

формы связности и тензор кручения-кривизны (R_{ik}^i , R_{ikl}^i) преобразуются следующим образом:

$$\omega^{i'} = A_i^{i'} \, \omega^i, \tag{6}$$

$$\omega_{\nu}^{i'} = A_{\nu}^{i'} dA_{\nu}^{k} + A_{\nu}^{i'} A_{\nu}^{j} \omega_{\nu}^{i}, \tag{7}$$

$$R_{\nu\nu}^{i'} = A_{i}^{i'} A_{\nu}^{j} A_{\nu}^{k} R_{i\nu}^{i} , \qquad (8)$$

$$R_{i'k'l'}^{i'} = A_i^{i'} A_{i'}^{j} A_{k'}^{k} A_{l'}^{l} R_{ikl}^{i}, (9)$$

причем

$$A_k^{j'} A_{i'}^k = \delta_{i'}^{j'}, \quad A_i^{k'} A_{k'}^j = \delta_i^j.$$
 (10)

§ 2. Теория поверхностей

1. Основные уравнения. Если в \mathfrak{H}_n m-мерная поверхность \mathfrak{H}_m задана уравнениями

 $u^{i}=f^{i}(v^{\alpha}),$

где v^{α} – независимые параметры, т. е. предполагается, что матрица $\left\| \frac{\partial f^{i}}{\partial v^{\alpha}} \right\|$ имеет ранг m, и пфаффовые формы Θ^{α} образуют базис картановского кольца $\Re \left[dv^1, \ \ldots, \ dv^n
ight]$, то дифференциальные уравнения поверхности можно записать в виде:

$$\omega^i = \Lambda^i_{\alpha} \ \Theta^{\alpha}. \tag{11}$$

Формы Θ^{α} имеют следующую структуру:

$$D\Theta^{\alpha} = [\Theta^{\beta}, \Theta^{\alpha}_{\beta}],$$

$$D\Theta^{\alpha}_{\beta} = [\Theta^{\gamma}_{\beta}, \Theta^{\alpha}_{\gamma}] + [\Theta^{\alpha}_{\beta\gamma}, \Theta^{\gamma}],$$

$$D\Theta^{\alpha}_{\beta\omega} = [\Theta^{\epsilon}_{\alpha\gamma}, \Theta^{\epsilon}_{\alpha}] + [\Theta^{\alpha}_{\alpha\gamma}, \Theta^{\epsilon}_{\beta}] - [\Theta^{\alpha}_{\beta\alpha}, \Theta^{\epsilon}_{\gamma}] + [\Theta^{\alpha}_{\beta\gamma\alpha}, \Theta^{\epsilon}],$$
(12)

где

$$\Theta^{\alpha}_{[\alpha_1 \ldots \alpha_p]} = 0.$$

Если введем обозначения

$$\nabla T_{\alpha_1 \dots \alpha_q}^{i_1 \dots i_p} = dT_{\alpha_1 \dots \alpha_q}^{i_1 \dots i_p} - \sum_{t=1}^q T_{\alpha_1 \dots \beta_t \dots \alpha_q}^{i_1 \dots i_p} \Theta_{\alpha_t}^{\beta} + \sum_{t=1}^p T_{\alpha_1 \dots \alpha_q}^{i_1 \dots i_p} \omega_j^{i_t},$$

то продолжение системы (11) дает:

$$\nabla \Lambda_{\alpha}^{i} = \Lambda_{\alpha\beta}^{i} \Theta^{\beta} , \qquad (13)$$

$$\nabla \Lambda_{\alpha\beta}^{i} + \Lambda_{\gamma}^{i} \Theta_{\alpha\beta}^{\gamma} = \Lambda_{\alpha\beta\gamma}^{i} \Theta^{\gamma}, \tag{14}$$

$$\nabla \Lambda^{i}_{\alpha\beta\gamma} + \Lambda^{i}_{\alpha\sigma} \Theta^{\sigma}_{\beta\gamma} + \Lambda^{i}_{\sigma\beta} \Theta^{\sigma}_{\alpha\gamma} + \Lambda^{i}_{\sigma\gamma} \Theta^{\sigma}_{\alpha\beta} - \Lambda^{i}_{\sigma} \Theta^{\sigma}_{\alpha\beta\gamma} = \Lambda^{i}_{\alpha\beta\gamma\sigma} \Theta^{\sigma}, \tag{15}$$

где

$$\Lambda^{i}_{[\alpha\beta]} = -R^{i}_{pq} \Lambda^{p}_{\alpha} \Lambda^{q}_{\beta}, \tag{16}$$

$$\Lambda_{[\alpha\beta]}^{i} = -R_{pq}^{i} \Lambda_{\alpha}^{p} \Lambda_{\beta}^{q},$$

$$\Lambda_{\alpha[\beta\gamma]}^{i} = -R_{kpq}^{i} \Lambda_{\alpha}^{k} \Lambda_{\beta}^{p} \Lambda_{\gamma}^{q}$$
(16)

и

$$\Lambda^{i}_{\alpha_{1}...\alpha_{n}[\beta\gamma]} = -R^{i}_{kpq} \Lambda^{k}_{\alpha_{1}...\alpha_{p}} \Lambda^{p}_{\beta} \Lambda^{q}_{\gamma}. \tag{18}$$

Система величин Λ^i_{α} , $\Lambda^i_{\alpha\beta}$, $\Lambda^i_{\alpha\beta\gamma}$ и h_{ij} образует фундаментальный дифференциально-геометрический об'ект третьего порядка поверхности \mathfrak{H}_m . Так как формы Θ^{lpha} линейно независимы, то матрицы $\left\| \frac{\partial f^i}{\partial v^{lpha}} \right\|$ и $\| \Lambda^i_{lpha} \|$ имеют равные ранги и векторы

$$\Lambda_{\alpha} = \Lambda_{\alpha}^{i} e_{i} \tag{19}$$

тоже линейно независимы. Эти векторы в каждой точке поверхности $\mathbf{5}_m$ определяют касательную плоскость $H_m(v)$, лежащую в $H_n(v)$. Метрический тензор этой плоскости имеет вид

$$H_{\alpha\beta} = h_{ij} \, \Lambda_{\alpha}^{i} \, \Lambda_{\beta}^{j} \tag{20}$$

и его компоненты удовлетворяют системе

$$\nabla H_{\alpha\beta} = H_{\alpha\beta, \gamma} \Theta^{\gamma}$$
,

где

$$H_{\alpha\beta,\gamma} = h_{ii} \Lambda^i_{\alpha\gamma} \Lambda^j_{\beta} + h_{ii} \Lambda^i_{\alpha} \Lambda^j_{\beta\gamma}$$

- 2. Формулы преобразования форм Θ^{α} , Θ^{α}_{β} и $\Theta^{\alpha}_{\beta\gamma}$. В каждой точке \emph{A} поверхности \mathfrak{H}_m мы имеем два репера $\{A, e_l\}$ и $\{A, \Lambda_{\alpha}\}$. Таким образом имеем три преобразования:
 - а) преобразование (5);
 - б) преобразование

$$\Lambda_{\alpha'} = B_{\alpha'}^{\alpha} \Lambda_{\alpha}; \tag{21}$$

в) преобразование (5) и (21).

В силу инвариантности дифференциальных уравнений поверхности 5 дм получаем, что

$$\Theta^{\alpha'} = B_{\alpha}^{\alpha'} \, \Theta^{\alpha}, \tag{22}$$

где

$$B_{\alpha}^{\alpha'}B_{\beta'}^{\alpha} = \delta_{\beta'}^{\alpha'}, \qquad B_{\alpha}^{\alpha'}B_{\alpha'}^{\beta} = \delta_{\alpha}^{\beta}.$$
 (23)

Дифференцируя внешним образом (22) и пользуясь инвариантностью структурных уравнений (12), т. е. считая, что

$$D\Theta^{\alpha'} = [\Theta^{\beta'}, \ \Theta^{\alpha'}_{\beta'}],$$

мы получим

$$[dB_{\alpha}^{\alpha'} - B_{\beta}^{\alpha'} \Theta_{\alpha}^{\beta} + B_{\alpha}^{\beta'} \Theta_{\beta'}^{\alpha'}, \ \Theta^{\alpha}] = 0.$$
 (24)

Применяя лемму Картана мы получаем

$$dB_{\alpha}^{\alpha'} - B_{\beta}^{\alpha'} \Theta_{\alpha}^{\beta} + B_{\alpha}^{\beta'} \Theta_{\beta'}^{\alpha'} = B_{\alpha\beta}^{\alpha'} \Theta^{\beta} , \qquad (25)$$

где

$$B_{[\alpha\beta]}^{\alpha'}=0.$$

Итак, формы Θ_a^{α} при невырожденных преобразованиях репера $\{A, \Lambda_{\alpha}\}$, как это следует из формул (25) и соотношений

$$dB_{\alpha}^{\alpha'}B_{\alpha'}^{\beta} + B_{\alpha}^{\alpha'}dB_{\alpha'}^{\beta} = 0, \tag{26}$$

преобразуются по закону

$$\Theta_{\beta'}^{\alpha'} = B_{\gamma}^{\alpha'} dB_{\beta'}^{\gamma} + B_{\alpha}^{\alpha'} B_{\beta'}^{\beta} \Theta_{\beta}^{\alpha} + B_{\alpha\beta}^{\alpha'} B_{\beta'}^{\alpha} \Theta^{\beta}. \tag{27}$$

Так как

$$dB^{\alpha}_{\alpha'} - B^{\alpha}_{\beta'} \Theta^{\beta'}_{\alpha'} + B^{\beta}_{\alpha'} \Theta^{\alpha}_{\beta} = B^{\alpha}_{\alpha'\beta'} \Theta^{\beta'}, \qquad (28)$$

то, в силу линейной независимости форм Θ^{α} , соотношения (26) дают

$$B_{\alpha\gamma}^{\alpha'}B_{\alpha'}^{\beta} + B_{\alpha}^{\alpha'}B_{\alpha'\gamma'}^{\beta}B_{\gamma}^{\gamma'} = 0. \tag{29}$$

Дифференцируя внешним образом систему (25) и считая, что

$$D\Theta_{\alpha'}^{\alpha'} = [\Theta_{\alpha'}^{\gamma'}, \ \Theta_{\alpha'}^{\alpha'}] + [\Theta_{\alpha', \gamma}^{\alpha'}, \ \Theta_{\alpha'}^{\gamma'}],$$

мы получим

$$[dB_{\alpha\beta}^{\alpha'} - B_{\alpha\gamma}^{\alpha'} \Theta_{\beta}^{\gamma} - B_{\gamma\beta}^{\alpha'} \Theta_{\alpha}^{\gamma} + B_{\alpha\beta}^{\beta'} \Theta_{\beta'}^{\alpha'} + B_{\gamma}^{\alpha'} \Theta_{\alpha\beta}^{\gamma} - B_{\beta}^{\beta'} B_{\beta}^{\gamma'} \Theta_{\beta'\gamma'}^{\alpha'}, \quad \Theta^{\beta}] = 0$$

или

$$dB_{\alpha\beta}^{\alpha'} - B_{\alpha\nu}^{\alpha'} \Theta_{\beta}^{\gamma} - B_{\alpha\beta}^{\alpha'} \Theta_{\alpha}^{\gamma} + B_{\alpha\beta}^{\beta'} \Theta_{\beta'}^{\alpha'} + B_{\alpha}^{\alpha'} \Theta_{\beta}^{\gamma} - B_{\alpha}^{\beta'} B_{\beta}^{\gamma'} \Theta_{\beta'\gamma'}^{\alpha'} = B_{\alpha\beta\gamma}^{\alpha'} \Theta^{\gamma}, \qquad (30)$$

где

$$B_{[\alpha\beta\gamma]}^{\alpha'}=0.$$

Отсюда и из формул (27) получается закон преобразования для форм $\Theta^{\alpha}_{\alpha\gamma}$: $\Theta^{\alpha'}_{\beta'\gamma} = B^{\beta}_{\beta'}\,B^{\gamma}_{\gamma'}\,(dB^{\alpha'}_{\beta\gamma} + B^{\epsilon'}_{\beta\gamma}\,B^{\alpha'}_{\epsilon}\,dB^{\epsilon}_{\epsilon'}) + B^{\alpha'}_{\alpha}\,B^{\beta}_{\beta'}\,B^{\gamma}_{\gamma'}\,\Theta^{\alpha}_{\beta\gamma} - B^{\beta}_{\beta'}\,B^{\epsilon}_{\gamma'}\,B^{\alpha'}_{\beta\gamma}\,\Theta^{\gamma}_{\epsilon} -$

$$-B_{g'}^{\varepsilon}B_{\gamma'}^{\gamma}B_{\theta\gamma}^{\alpha'}\Theta_{\varepsilon}^{\beta} + B_{g'}^{\beta}B_{\gamma'}^{\gamma}B_{\varepsilon}^{\alpha'}B_{\varepsilon'}^{\delta}B_{\varepsilon'}^{\delta}\Theta_{\alpha\beta}^{\varepsilon}\Theta_{\delta}^{\varepsilon} + B_{g'}^{\alpha}B_{\gamma'}^{\beta}(B_{\varepsilon'}^{\varepsilon}B_{\alpha\beta}^{\varepsilon'}B_{\varepsilon\gamma}^{\alpha'} - B_{\alpha\beta\gamma}^{\alpha'})\Theta^{\gamma}. \tag{31}$$

Если считать, что

$$dB^{\alpha}_{\alpha'\beta'} - B^{\alpha}_{\alpha'\gamma'} \Theta^{\gamma}_{\beta'} - B^{\alpha}_{\gamma'\beta'} \Theta^{\gamma}_{\alpha'} + B^{\beta}_{\alpha'\beta'} \Theta^{\alpha}_{\beta} + B^{\alpha}_{\gamma'} \Theta^{\gamma'}_{\alpha'\beta'} - B^{\beta}_{\alpha'} B^{\gamma}_{\beta'} \Theta^{\alpha}_{\beta\gamma} = B^{\alpha}_{\alpha'\beta'\gamma'} \Theta^{\gamma}_{\gamma},$$

то, дифференцируя соотношения (29), получаем

$$B_{\alpha\beta\gamma}^{\alpha'}B_{\alpha'}^{\epsilon} + B_{\alpha\beta}^{\alpha'}B_{\alpha'\epsilon'}^{\epsilon}B_{\gamma}^{\epsilon'} + B_{\alpha\gamma}^{\alpha'}B_{\alpha'\gamma'}^{\epsilon}B_{\beta}^{\gamma'} + B_{\alpha}^{\alpha'}B_{\alpha'\gamma'\epsilon'}^{\epsilon}B_{\gamma}^{\epsilon'}B_{\beta}^{\gamma'} + B_{\alpha}^{\alpha'}B_{\alpha'\gamma'}^{\epsilon}B_{\beta\gamma}^{\gamma'} = 0. \tag{32}$$

3. Формулы преобразования компонент об'екта (Λ^i_{α} , $\Lambda^i_{\alpha\beta}$, $\Lambda^i_{\alpha\beta\gamma}$). Дифференциальные уравнения поверхности \mathfrak{H}_m в новых реперах имеют вид:

$$\omega^{i'} = \Lambda^{i'}_{\alpha'} \Theta^{\alpha'}.$$

Отсюда, в силу (6) и (11), получаем закон преобразования величин Λ_{π}^{i} :

$$\Lambda_{\alpha'}^{i'} = A_i^{i'} B_{\alpha'}^{\alpha} \Lambda_{\alpha}^{i} , \qquad (33)$$

т. е. об'ект Λ^i_{α} является смешанным тензором, который назовем связующим об'ектом поверхности \mathfrak{H}_m . Так как величины Λ^i_{α} , являются решением системы

$$\nabla \Lambda_{\sigma'}^{i'} = \Lambda_{\sigma'\beta'}^{i'} \Theta^{\beta'},$$

то дифференцируя (33), в силу (7), (13), (22), (27) и линейной независимости форм Θ^{α} , получаем

$$\Lambda^{i'}_{\alpha'\beta'}B^{\beta'}_{\beta} = A^{i'}_{i}B^{\alpha}_{\alpha'\epsilon'}B^{\epsilon'}_{\beta}\Lambda^{i}_{\alpha} + A^{i'}_{i}B^{\alpha}_{\alpha'}\Lambda^{i}_{\alpha\beta}. \tag{34}$$

Отсюда и следует, что закон преобразования компонент $\Lambda_{\alpha B}^{i}$ имеет вид:

$$\Lambda^{i'}_{\alpha'\beta'} = A^{i'}_i B^{\alpha}_{\alpha'} B^{\beta}_{\beta'} \Lambda^{i}_{\alpha\beta} + A^{i'}_i B^{\alpha}_{\alpha'\beta'} \Lambda^{i}_{\alpha}. \tag{35}$$

Дифференцирование этих равенств, в силу (7), (13), (14), (22), (27), (29), (31), (32), линейной независимости Θ^{α} и дифференциальных уравнений

$$\nabla \Lambda_{\alpha'\beta'}^{i'} + \Lambda_{\gamma'}^{i'} \Theta_{\alpha'\beta'}^{\gamma'} = \Lambda_{\alpha'\beta'\gamma'}^{i'} \Theta^{\gamma'},$$

дает

$$\begin{split} &\Lambda^{i'}_{\alpha'\beta'\gamma'}B^{\gamma'}_{\gamma} = A^{i'}_{i}\,B^{\alpha'}_{\alpha'\gamma'}\,B^{\gamma'}_{\gamma}\,B^{\beta}_{\beta'}\,\Lambda^{i}_{\alpha\beta} + A^{i'}_{i}\,B^{\alpha}_{\alpha'}\,B^{\beta}_{\beta'\gamma'}\,B^{\gamma'}_{\gamma}\,\Lambda^{i}_{\alpha\beta} + \\ &+ A^{i'}_{i}\,B^{\alpha'}_{\alpha'}\,B^{\beta}_{\beta'}\,\Lambda^{i}_{\alpha\beta\gamma} + A^{i'}_{i}\,B^{\alpha}_{\alpha'\beta'\alpha'}\,B^{\gamma'}_{\gamma}\,\Lambda^{i}_{\alpha} + A^{i'}_{i}\,B^{\alpha}_{\alpha'\beta'}\,\Lambda^{i}_{\alpha\gamma}\,, \end{split}$$

т. е. закон преобразования компонент $\Lambda^i_{\alpha\beta\gamma}$ имеет вид

$$\Lambda_{\alpha'\beta'\gamma'}^{i'} = A_i^{i'} B_{\alpha'}^{\alpha} B_{\beta'}^{\beta} B_{\gamma'}^{\gamma} \Lambda_{\alpha\beta\gamma}^{i} + A_i^{i'} (B_{\alpha'\gamma'}^{\alpha} B_{\beta'}^{\gamma} + B_{\alpha'}^{\alpha} B_{\beta'\gamma'}^{\gamma} + B_{\gamma'}^{\gamma} B_{\alpha'\beta'}^{\alpha}) \Lambda_{\alpha\gamma}^{i} + A_i^{i'} B_{\alpha'\beta\gamma'}^{\alpha} \Lambda_{\alpha}^{i}.$$
(36)

Если пространство \mathfrak{H}_n является обобщенно евклидовым пространством H_n , реперы $\{A, e_i\}$ и $\{A, \Lambda_\alpha\}$ голономные, т. е.

$$\omega^i = du^i, \quad \Theta^\alpha = dv^\alpha.$$

TO

$$B^{\alpha'}_{\alpha_1 \dots \alpha_p} = \frac{\partial^p v^{\alpha'}}{\partial v^{\alpha_1} \dots \partial v^{\alpha_p}} ,$$

$$B^{\alpha}_{\alpha'_1 \dots \alpha'_p} = \frac{\partial^p v^{\alpha}}{\partial v^{\alpha'_1} \dots \partial v^{\alpha'_p}} ,$$

$$\Lambda^l_{\alpha_1 \dots \alpha_p} = \frac{\partial^p u^l}{\partial v^{\alpha_1} \dots \partial v^{\alpha_p}} ,$$

и формулы (33), (35) и (36) являются законами преобразования частных производных

$$\frac{\partial u^i}{\partial v^\alpha} \;, \quad \frac{\partial^3 u^i}{\partial v^\alpha \, \partial v^\beta} \quad \text{M} \quad \frac{\partial^3 u^i}{\partial v^\alpha \, \partial v^\beta \, \partial v^\gamma} \;.$$

4. Левый сопровождающий репер поверхности \mathfrak{H}_m . Каждой точке поверхности \mathfrak{H}_m соответствует прямоугольная матрица

$$L = || \lambda_{\alpha i} ||, \quad \lambda_{\alpha i} = h_{ij} \Lambda_{\alpha}^{j},$$

которая в локальном пространстве $H_n(v)$ порождает линейный оператор L(v). Совокупность векторов $N=N^ie_i$ пространства $H_n(v)$, которые оператор L(v) отображает в нуль:

$$L: N \to 0$$

образует n-m-мерное пространство $\mathfrak{N}_{n-m}(v)$. Это пространство назовем левым нормальным пространством поверхности \mathfrak{H}_m . Линейно независимые решения N_a^I системы

$$\lambda_{\alpha i} N^i = 0, \quad g_{ii} N^i N^j = 1$$

образуют линейно независимую систему единичных векторов

$$N_{\hat{a}} = N_{\hat{a}}^i e_i \tag{37}$$

пространства $\mathfrak{N}_{n-m}(v)$. Так как

$$\mathfrak{N}_{n-m}(v) + \boldsymbol{H}_{m}(v) = \boldsymbol{H}_{n}(v),$$

$$\mathfrak{N}_{n-m}(v) \cap \boldsymbol{H}_{m}(v) = \boldsymbol{A},$$

то $\mathfrak{N}_{n-m}(v)$ определяет оснащение поверхности \mathfrak{H}_m . Компоненты метрического тензора $H_{\mathfrak{p}_n^2}$ пространства $\mathfrak{N}_{n-m}(v)$ в репере $\{A, N_2\}$ имеют вид

$$H_{\widehat{\alpha}\widehat{\beta}} = h_{ii} N_{\widehat{\alpha}}^{i} N_{\widehat{\beta}}^{j} \tag{38}$$

и при невырожденном преобразовании репера $\{A, N_a\}$:

$$N_{\mathbf{a}'} = B_{\mathbf{a}'}^{\hat{\mathbf{a}}} N_{\mathbf{a}} \tag{39}$$

преобразуются по закону*

$$H_{\mathbf{\hat{a}}'\hat{\mathbf{\hat{\beta}}'}} = B_{\mathbf{\hat{a}}'}^{\mathbf{\hat{a}}} B_{\mathbf{\hat{\beta}}'}^{\mathbf{\hat{\beta}}} H_{\mathbf{\hat{a}}\hat{\mathbf{\hat{\beta}}}}.$$

Так как величины N_a^i являются решениями системы

$$\nabla N_{\mathbf{a}}^{i} = N_{\mathbf{a}\mathbf{a}}^{i} \, \Theta^{\beta} \,, \tag{40}$$

то

$$dH_{\hat{\mathbf{a}}\hat{\mathbf{s}}} = H_{\hat{\mathbf{a}}\hat{\mathbf{s}}, \gamma} \Theta^{\gamma}, \tag{41}$$

где

$$H_{\widehat{\mathbf{a}}\widehat{\boldsymbol{\beta}},\;\boldsymbol{\gamma}} = h_{ij}\;N_{\widehat{\mathbf{a}}}^i\;N_{\widehat{\boldsymbol{\beta}}\boldsymbol{\gamma}}^i + h_{ij}\;N_{\widehat{\mathbf{a}}\boldsymbol{\gamma}}^i\;N_{\widehat{\boldsymbol{\beta}}}^j\;.$$

В каждой точке A поверхности \mathfrak{H}_m имеем n линейно независимых векторов Λ_α и $N_{\mathfrak{C}}$, которые будем называть левым сопровождающим репером $\{A, \Lambda_\alpha, N_2\}$ поверхности \mathfrak{H}_m . Пространства $H_m(v)$ и $\mathfrak{N}_{n-m}(v)$ являются инвариантными относительно линейных операторов, определяемых прямым произведением матриц преобразования (21) и (39). Связность в многообразии касательных плоскостей $\{H_m(v)\}$ поверхности \mathfrak{H}_m , установленную при помощи проектирования вдоль пространства $\mathfrak{N}_{n-m}(v)$, будем называть левой индуцированной связностью поверхности \mathfrak{H}_m .

$$B_{\hat{\mathbf{a}}'}^{\hat{\alpha}} B_{\hat{\mathbf{a}}}^{\hat{\beta}'} = \delta_{\hat{\mathbf{a}}'}^{\hat{\beta}'}, \qquad B_{\hat{\mathbf{a}}'}^{\hat{\alpha}} B_{\hat{\beta}}^{\hat{\alpha}'} = \delta_{\hat{\mathbf{a}}}^{\hat{\alpha}}.$$

^{*} Предполагается, что

5. Левые деривационные формулы Гаусса—Вейнгартена. Для поверхности \mathfrak{H}_m можно составить уравнения, аналогичные левым деривационным уравнениям гиперповерхности пространства \mathfrak{H}_n . Векторы $\Lambda^i_{\alpha\beta} e_i$ и $N^i_{\alpha\beta} e_i$ допускают представления в виде линейной комбинации векторов Λ_α и \mathcal{N}_α :

$$\Lambda_{\alpha\beta}^{i} e_{i} = L_{\alpha\beta}^{\gamma} \Lambda_{\gamma} + l_{\alpha\beta}^{\gamma} N_{\phi}, \tag{42}$$

$$N_{\hat{a}\hat{a}}^{i} e_{i} = l_{\hat{a}\hat{a}}^{\gamma} \Lambda_{\hat{c}} + N_{\hat{a}\hat{a}}^{\gamma} N_{\hat{c}}, \qquad (43)$$

где

$$L_{\alpha\beta}^{\gamma} = H^{e\gamma} h_{ii} \Lambda_{\alpha\beta}^{i} \Lambda_{\epsilon}^{j} , \qquad (44)$$

$$\hat{I}_{\alpha\beta}^{\gamma} = H^{\varrho\gamma} h_{ij} N_{\varrho}^{i} \Lambda_{\alpha\beta}^{\prime} , \qquad (45)$$

$$l_{\hat{a}\hat{a}}^{\gamma} = -H^{\epsilon\gamma} H_{\hat{a}\hat{a}} l_{\epsilon\hat{a}}^{\hat{a}}, \qquad (46)$$

$$N_{\hat{\mathbf{a}}\beta}^{\uparrow} = H^{\hat{\mathbf{e}}\gamma} h_{ij} N_{\hat{\mathbf{e}}}^{i} N_{\hat{\mathbf{a}}\beta}^{j} , \qquad (47)$$

$$g_{ij} = h_{(ij)}, \quad a_{ii} = h_{[ij]},$$
 (48)

$$h^{pi} h_{ia} = \delta^p_a, \qquad h^{ip} h_{al} = \delta^p_a \,, \tag{49}$$

$$H^{\sigma\alpha}H_{\beta\sigma} = \delta^{\alpha}_{\beta}, \qquad H^{\alpha\sigma}H_{\sigma\beta} = \delta^{\alpha}_{\beta}, \qquad (50)$$

$$H^{\hat{\sigma}\hat{\alpha}}H_{\hat{\alpha}\hat{\alpha}} = \delta_{\hat{\alpha}}^{\hat{\alpha}}, \qquad H^{\hat{\alpha}\hat{\sigma}}H_{\hat{\alpha}\hat{\alpha}} = \delta_{\hat{\alpha}}^{\hat{\alpha}}. \tag{51}$$

Величины

$$l_{\alpha\beta} = h_{ij} \Lambda_{\alpha}^{i} N_{\beta}^{j} \tag{52}$$

удовлетворяют системе дифференциальных уравнений

$$\nabla l_{\alpha\hat{\alpha}} = (h_{ii} \Lambda_{\alpha\gamma}^{i} N_{\hat{\alpha}}^{j} + h_{ii} \Lambda_{\alpha}^{i} N_{\hat{\alpha}\gamma}^{j}) \Theta^{\gamma}, \qquad (53)$$

т. е. образуют систему тензоров (смещанный тензор пространства $H_m(v) \times \mathfrak{N}_{n-m}(v)$), которую назовем основной системой левых ковекторов поверхности \mathfrak{H}_m . Уравнения (42) и (43) назовем левыми деривационными формулами Гаусса—Вейнгартена поверхности \mathfrak{H}_m . Так как $H^{a\beta}$, h_{ij} и $H_{a\beta}$ тензоры, соответственно, относительно преобразований реперов пространств $H_m(v)$, $H_n(v)$ и $\mathfrak{N}_{n-m}(v)$, то, в силу (32), (33) и (35), мы получаем*

$$L_{\alpha'\beta'}^{\gamma'} = B_{\alpha'\beta'}^{\gamma} B_{\gamma}^{\gamma'} + B_{\alpha'}^{\alpha} B_{\beta'}^{\beta} B_{\gamma}^{\gamma'} L_{\alpha\beta}^{\gamma}, \qquad (54)$$

$$l_{\alpha'\beta'}^{\gamma'} = B_{\alpha'}^{\alpha} B_{\beta'}^{\beta} B_{\gamma}^{\gamma'} l_{\alpha\beta}^{\gamma} , \qquad (55)$$

$$l_{\mathbf{A},\alpha}^{\gamma'} = B_{\mathbf{A}'}^{\mathbf{A}} B_{\mathbf{A}'}^{\mathbf{B}} B_{\mathbf{A}'}^{\mathbf{B}} l_{\mathbf{A}\mathbf{A}}^{\gamma}, \tag{56}$$

$$N_{\hat{\alpha}'\beta'}^{\uparrow\prime} = B_{\hat{\alpha}'}^{\hat{\alpha}} B_{\beta'}^{\beta} B_{\gamma'}^{\gamma} N_{\hat{\alpha}\beta}^{\uparrow} + B_{\hat{\alpha}'\beta}^{\uparrow} B_{\beta'}^{\beta} B_{\gamma'}^{\gamma}, \qquad (57)$$

т. е. $L_{\alpha\beta}^{\gamma}-$ об'ект аффинной связности, $l_{\alpha\beta}^{\hat{\gamma}}$ и $l_{\alpha\beta}^{\gamma}$ смешанные тензоры, относительно преобразований пространства $H_m(v) \times \mathfrak{R}_{n-m}(v)$. Величины $N_{\alpha\beta}^{\hat{\gamma}}$ образуют об'ект аффинной связности многообразия $\left\{\mathfrak{R}_{n-m}(v)\right\}$. Если репер левого нормального пространства $\mathfrak{R}_{n-m}(v)$ не меняется, то величины $l_{\alpha\beta}^{\hat{\gamma}}$, $l_{\alpha\beta}^{\hat{\gamma}}$, $N_{\alpha\beta}^{\hat{\gamma}}$ образуют системы тензоров, относительно преобразований пространства $H_m(v)$. Об'ект $L_{\alpha\beta}^{\hat{\gamma}}$ будем называть об'ектом левой индуцированной связности поверхности, $l_{\alpha\beta}^{\hat{\gamma}}$ — основной системой левых асимптотических тензоров и $N_{\alpha\beta}^{\hat{\gamma}}$ — основной системой левых нормальных тензоров (ковариантных векторов) поверхности \mathfrak{H}_m . Дифференциальные уравнения величин $L_{\alpha\beta}^{\hat{\gamma}}$ и $l_{\alpha\beta}^{\hat{\gamma}}$ имеют вид

$$\nabla L_{\alpha\beta}^{\gamma} + \Theta_{\alpha\beta}^{\gamma} = L_{\alpha\beta, \sigma}^{\gamma} \Theta^{\sigma}, \qquad \nabla l_{\alpha\beta}^{\hat{\gamma}} = l_{\alpha\beta, \sigma}^{\hat{\gamma}} \Theta^{\sigma}, \tag{58}$$

$$dB_{\hat{\alpha}'}^{\hat{\beta}} = B_{\hat{\alpha}'Y}^{\hat{\beta}} \Theta^{Y}$$

^{, *} При выводе соотношений (57) воспользовались равенствами

где

$$L_{\alpha\beta,\,\epsilon}^{\gamma} = H_{...,\epsilon}^{\sigma\gamma} h_{ij} \Lambda_{\alpha\beta}^{i} \Lambda_{\sigma}^{j} + H^{\sigma\gamma} h_{ij} \Lambda_{\alpha\beta\epsilon}^{i} \Lambda_{\sigma}^{j} + H^{\sigma\gamma} h_{ij} \Lambda_{\alpha\beta}^{i} \Lambda_{\sigma\epsilon}^{j},$$

$$\hat{I}_{\alpha\beta,\,\gamma}^{\hat{\alpha}} = -H_{...,\gamma}^{\hat{\alpha}\hat{\alpha}} h_{j} N_{\hat{\epsilon}}^{i} \Lambda_{\alpha\beta}^{j} - H^{\hat{\epsilon}\hat{\alpha}} h_{ij} N_{\hat{\epsilon}}^{i} \Lambda_{\alpha\beta}^{j} - H^{\hat{\epsilon}\hat{\alpha}} h_{ij} N_{\hat{\epsilon}}^{i} \Lambda_{\alpha\beta\gamma}^{i},$$

$$H_{...,\,\epsilon}^{\alpha\gamma} = -H^{\alpha\sigma} H^{\gamma\gamma} H_{\sigma\gamma,\,\epsilon} \qquad H_{...,\,\gamma}^{\hat{\alpha}\hat{\beta}} = -H^{\hat{\alpha}\hat{\sigma}} H^{\hat{\gamma}\hat{\beta}} H_{\hat{\delta}\hat{\tau},\,\gamma}.$$
(59)

Тензор кручения $\Lambda^{\gamma}_{\alpha\beta}$ и тензор кривизны $\Lambda^{\beta}_{\alpha\beta\gamma}$ об'єкта левой индуцированной связности $L^{\gamma}_{\alpha\beta}$:

$$\Lambda_{\alpha\beta}^{\gamma} = H^{\sigma\gamma} h_{ij} R_{pq}^{i} \Lambda_{\alpha}^{p} \Lambda_{\beta}^{q} \Lambda_{\sigma}^{i},$$

$$\Lambda_{\alpha\beta\gamma}^{\epsilon} = -L_{\alpha[\beta, \gamma]}^{\epsilon} -L_{\sigma[\beta}^{\alpha} L_{|\alpha| \gamma]}^{\sigma}$$
(60)

будем называть, соответственно, тензором левого кручения и тензором левой кривизны (левым тензором Римана — Кристоффеля) поверхности \mathfrak{H}_m

6. Условия совместности левых деривационных уравнений. Альтернируя уравнения (42) по индексам α , β и сравнивая коэффициенты при линейно независимых векторах репера $\{A, e_i\}$, мы получим связь между тензором левого кручения поверхности \mathfrak{H}_m и теизором кручения пространства \mathfrak{H}_m в виде

$$R_{na}^{i} \Lambda_{\alpha}^{p} \Lambda_{\beta}^{q} = \Lambda_{\alpha\beta}^{\gamma} \Lambda_{\gamma}^{i} + H^{\hat{\sigma}\hat{\rho}} h_{ik} N_{\sigma}^{j} R_{na}^{k} \Lambda_{\alpha}^{p} \Lambda_{\beta}^{q} N_{\hat{\beta}}^{i}. \tag{61}$$

Эти соотношения мы будем называть левыми обобщенными уравнениями Риччи поверхности \mathfrak{H}_m (они эквивалентны уравнениям (60_1)).

Уравнения (42) и (43) можно представить в виде:

$$\Lambda_{\alpha\beta}^{i} = L_{\alpha\beta}^{\gamma} \Lambda_{\alpha}^{i} + l_{\alpha\beta}^{\gamma} N_{\alpha}^{i} \tag{42'}$$

И

$$N_{\alpha\beta}^{i} = I_{\alpha\beta}^{\gamma} \Lambda_{\gamma}^{i} + N_{\alpha\beta}^{\gamma} N_{\gamma}^{i}. \tag{43'}$$

Продолжение этих уравнений дает

$$\Lambda^{i}_{\alpha\beta\gamma} = L^{\sigma}_{\alpha\beta,\gamma} \Lambda^{i}_{\sigma} + L^{\sigma}_{\alpha\beta} \Lambda^{i}_{\sigma\gamma} + l^{\delta}_{\alpha\beta,\gamma} N^{i}_{\partial} + l^{\delta}_{\alpha\beta} N^{i}_{\partial\gamma} , \qquad (62)$$

$$\begin{vmatrix}
N_{\dot{\alpha}\beta\gamma}^{i} - \bar{\alpha}\beta, & \gamma - \bar{\alpha} - \bar{\alpha}\beta - \bar{\alpha}\gamma + \bar{\alpha}\beta, & \gamma - \bar{\alpha}\beta - \bar{\alpha}\beta & \gamma -$$

где

$$\nabla N_{\tilde{\alpha}\beta}^{i} = N_{\tilde{\alpha}\beta\gamma}^{i} \Theta^{\gamma}, \qquad \nabla N_{\tilde{\alpha}\beta}^{\hat{\sigma}} = N_{\tilde{\alpha}\beta,\gamma}^{\hat{\sigma}} \Theta^{\gamma}, \tag{64}$$

причем

$$N_{\hat{\mathbf{a}}[\beta\gamma]}^{i} = -N_{\hat{\mathbf{a}}}^{k} R_{kpq}^{i} \Lambda_{\beta}^{p} \Lambda_{\gamma}^{q}. \tag{65}$$

Альтернируя уравнения (62) и (63), мы получим связь между тензорами кривизны пространства \mathfrak{S}_n и тензором левого кручения—кривизны поверхности \mathfrak{S}_m :

$$R_{pqr}^{i} \Lambda_{\alpha}^{p} \Lambda_{\beta}^{q} \Lambda_{\gamma}^{r} = \left(\Lambda_{\alpha\beta\gamma}^{\sigma} - l_{\alpha[\beta}^{\hat{q}} l_{|\hat{\alpha}|\gamma]}^{\alpha}\right) \Lambda_{\sigma}^{i} + \left(\sum_{|\gamma|} l_{|\alpha|\beta]}^{\hat{q}} - l_{\alpha\tau}^{\hat{q}} \Lambda_{\beta\gamma}^{r} + l_{\alpha[\beta}^{\hat{q}} N_{|\hat{\alpha}|\gamma]}^{\hat{q}}\right) N_{\hat{a}}^{i}, \qquad (66)$$

$$- N_{\hat{a}}^{k} R_{kpq}^{i} \Lambda_{\beta}^{p} \Lambda_{\gamma}^{q} = \left(\sum_{|\gamma|} l_{|\alpha|\beta]}^{\sigma} - \Lambda_{\beta\gamma}^{r} l_{\alpha\tau}^{q} + N_{\hat{a}[\beta}^{\hat{q}} l_{|\hat{\alpha}|\gamma]}^{\sigma}\right) \Lambda_{\alpha}^{i} + \left(\sum_{|\gamma|} N_{|\hat{\alpha}|\beta]}^{\hat{q}} - \Lambda_{\beta\gamma}^{r} N_{\hat{a}\tau}^{\hat{q}} + N_{\hat{a}[\beta}^{\hat{q}} N_{|\hat{\alpha}|\gamma]}^{\hat{q}}\right) N_{\hat{a}}^{i}, \qquad (67)$$

где ∇_{γ} — символ неголономной ковариантной производной относительно об'екта $L_{\alpha\beta}^{\gamma}$. Свертывание равенств (66) и (67) с h_{ij} Λ_{ρ}^{j} и h_{ij} N_{β}^{j} , в силу (4), (46) и $H_{\sigma\beta}$ $I_{\alpha\gamma}^{\sigma}+H_{\alpha\delta}$ $I_{\beta\gamma}^{\sigma}=0$, дает только следующие условия совместности системы левых деривационных уравнений:

$$h_{ij} R^{i}_{pqr} \Lambda^{j}_{\rho} \Lambda^{q}_{\alpha} \Lambda^{q}_{\beta} \Lambda^{r}_{\gamma} = H_{\sigma\rho} \left(\Lambda^{\sigma}_{\alpha\beta\gamma} - l^{\tau}_{\alpha[\beta} l^{\sigma}_{|\tau|\gamma]} \right), \tag{68}$$

$$h_{ij} R_{pqr}^{i} N_{\hat{0}}^{j} \Lambda_{\alpha}^{p} \Lambda_{\alpha}^{q} \Lambda_{\beta}^{r} = H_{\hat{\alpha}\hat{0}} (\stackrel{L}{\nabla}_{[x]} l_{[\alpha]\hat{0}}^{\hat{0}} - \Lambda_{\alpha\alpha}^{\hat{0}} \Lambda_{\beta\gamma}^{p} + l_{\alpha[\hat{0}]}^{\hat{0}} N_{[\hat{0}]\hat{\gamma}}^{\hat{0}})$$
(69)

И

$$h_{ij} R_{kpq}^{i} N_{\hat{\alpha}}^{i} N_{\hat{\beta}}^{k} \Lambda_{\hat{\beta}}^{p} \Lambda_{\hat{\gamma}}^{q} = H_{\hat{\alpha}\hat{\beta}} (\stackrel{L}{\nabla}_{[\gamma} N_{i\hat{\alpha}|\hat{\beta}]}^{\hat{\sigma}} - \Lambda_{\hat{\beta}\gamma}^{\tau} N_{\hat{\alpha}\tau}^{\sigma} + N_{\hat{\alpha}[\hat{\beta}]}^{\hat{\tau}} N_{i\hat{\gamma}|\gamma]}^{\hat{\sigma}}). \tag{70}$$

Так как при m=n-1 уравнения (70) отсутствуют, то уравнения (68) будем называть левыми обобщенными уравнениями Гаусса для поверхности \mathfrak{H}_m в \mathfrak{H}_n , (69) — левыми обобщенными уравнениями Петерсона — Кодащци — Майнарди, а (70) — левыми обобщенными уравнениями Фосса — Риччи.

Неголономные ковариантные производные тензоров $H_{\alpha\beta}$, $H_{\hat{\alpha}\hat{\beta}}$ и основной системы левых ковекторов $l_{\alpha\hat{\beta}}$ можно представить в следующем виде:

$$\overset{L}{\nabla_{\Upsilon}} H_{\alpha\beta} = l_{\alpha\beta} l_{\beta\gamma}^{\beta}, \quad \overset{L}{\nabla_{\Upsilon}} H_{\hat{\alpha}\hat{\beta}} = 2H_{(\hat{\alpha}|\hat{\alpha}|)} N_{\hat{\beta}|\Upsilon}^{\hat{\alpha}} + l_{\alpha\hat{\beta}} l_{\hat{\alpha}\Upsilon}^{\sigma},
\overset{L}{\nabla_{\Upsilon}} l_{\alpha\hat{\beta}} = 2H_{(\alpha\sigma)} l_{\beta\Upsilon}^{\sigma} + l_{\alpha\hat{\alpha}} N_{\hat{\beta}\Upsilon}^{\hat{\alpha}}.$$
(71)

7. Сопровождающий репер поверхности \mathfrak{H}_m . Совокупность векторов $n=n^i\,e_i$ пространства $H_n(v)$ образуют подпространство $N_{n-m}(v)$, которые будем называть нормальным пространством поверхности \mathfrak{H}_m . Координаты базисных единичных векторов n^i_α этого пространства являются решениями системы

$$g_{ij} \Lambda_{\alpha}^{i} n_{\hat{\alpha}}^{j} = 0, \quad g_{ij} n_{\hat{\alpha}}^{i} n_{\hat{\alpha}}^{j} = 1.$$
 (72)

В каждой точке поверхности \mathfrak{H}_m имеем репер, образованный из линейно независимых векторов Λ_{α} и $n_2=n_2^i\,e_i$, который будем называть сопровождающим репером поверхности. Связность, установленную в [многообразии пространств $\{H_m(v)\}$ при помощи проектирования вдоль нормального пространства $\mathcal{N}_{n-m}(v)$, назовем индуцированной связностью поверхности \mathfrak{H}_m . Величины n_2^i удовлетворяют системе

$$\nabla n_{\hat{\alpha}}^i = n_{\hat{\alpha}\beta}^i \Theta^{\beta} \,. \tag{73}$$

8. Деривационные формулы Гаусса—Вейнгартена. Эти формулы мы получим, разлагая векторы $\Lambda^i_{\alpha\beta} e_i$ и $n^i_{\beta\beta} e_i$ по векторам сопровождающего репера:

$$\Lambda_{\alpha\beta}^{i} e_{i} = \Gamma_{\alpha\beta}^{\gamma} \Lambda_{\gamma} + b_{\alpha\beta}^{\gamma} n_{\gamma}, \qquad (74)$$

$$n_{\hat{\mathbf{a}}\hat{\mathbf{a}}}^{i} \mathbf{e}_{i} = b_{\hat{\mathbf{a}}\hat{\mathbf{a}}}^{\Upsilon} \Lambda_{\mathbf{v}} + n_{\hat{\mathbf{a}}\hat{\mathbf{a}}}^{\hat{\mathbf{a}}} \mathbf{n}_{\hat{\mathbf{a}}}, \tag{75}$$

где

$$\Gamma^{\gamma}_{\alpha\beta} = G^{\gamma\alpha} g_{ii} \Lambda^{i}_{\alpha\beta} \Lambda^{j}_{\alpha} , \qquad (76)$$

$$G_{\alpha\beta} = H_{(\alpha\beta)}, \qquad G^{\alpha\beta} = \frac{\partial \ln \det || G_{\gamma\varepsilon}||}{\partial G_{\alpha\beta}},$$
 (77)

$$b_{\alpha\beta}^{\hat{\gamma}} = G^{\hat{\gamma}\hat{\sigma}} g_{ij} \Lambda_{\alpha\beta}^{i} n_{\hat{\sigma}}^{j}, \qquad (78)$$

$$G_{\hat{\alpha}\hat{\beta}} = g_{ij} n_{\hat{\alpha}}^{i} n_{\hat{\beta}}^{j} , \qquad G^{\hat{\alpha}\hat{\beta}} = \frac{\partial \ln \det || G_{\hat{\gamma}\hat{\epsilon}}||}{dG_{\hat{\alpha}\hat{\alpha}}} , \qquad (79)$$

$$b_{\hat{\sigma}\hat{\mathbf{G}}}^{\Upsilon} = -G^{\Upsilon\sigma} G_{\hat{\sigma}\hat{\mathbf{G}}} b_{\sigma\hat{\mathbf{G}}}^{\hat{\mathbf{G}}}, \tag{80}$$

$$n_{\hat{\mathbf{g}}_{0}}^{\hat{\gamma}} = G^{\hat{\gamma}\hat{\mathbf{g}}} g_{ii} n_{\hat{\mathbf{g}}_{0}}^{i} n_{\hat{\mathbf{g}}_{0}}^{i}. \tag{81}$$

Дифференцируя уравнения (76), (78), (79₁), (80) и (81), мы получим

$$\begin{split} &\nabla \Gamma^{\gamma}_{\alpha\beta} + \Theta^{\gamma}_{\alpha\beta} = \Gamma^{\gamma}_{\alpha\beta,\,\sigma} \, \Theta^{\sigma} \,, \qquad \nabla b^{\hat{\gamma}}_{\alpha\beta} = b^{\hat{\gamma}}_{\alpha\beta,\,\sigma} \, \Theta^{\sigma} \,, \\ &\nabla G_{\hat{\alpha}\hat{\alpha}} = G_{\hat{\alpha}\hat{\alpha},\,\sigma} \, \Theta^{\gamma}, \qquad \nabla n^{\hat{\gamma}}_{\hat{\alpha}\hat{\alpha}} = n^{\hat{\gamma}}_{\hat{\alpha}\hat{\alpha},\,\sigma} \, \Theta^{\sigma} \,, \end{split}$$

где

$$\begin{split} &\Gamma^{\gamma}_{\alpha\beta,\,\sigma} = G^{\gamma\gamma}_{\dots,\,\sigma}\,g_{ij}\,\Lambda^{i}_{\alpha\beta}\,\Lambda^{j}_{\tau} + G^{\gamma\tau}\,g_{ij}\,\Lambda^{i}_{\alpha\beta\sigma}\,\Lambda^{j}_{\tau} + G^{\gamma\tau}\,g_{ij}\,\Lambda^{i}_{\alpha\beta}\,\Lambda^{j}_{\tau\sigma}\,,\\ &G^{\alpha\beta}_{\dots,\,\gamma} = -G^{\alpha\sigma}\,G^{\beta\tau}\,G_{\sigma\tau,\,\gamma}\,,\qquad G_{\sigma\tau,\,\gamma} = H_{(\sigma\tau),\,\gamma}\,,\\ &b^{\mathfrak{d}}_{\alpha\beta,\,\gamma} = G^{\mathfrak{d}\hat{\sigma}}_{\dots,\,\gamma}\,g_{ij}\,\Lambda^{i}_{\alpha\beta}\,n^{j}_{\dot{\sigma}} + G^{\hat{\mathfrak{d}}\hat{\sigma}}\,g_{ij}\,\Lambda^{i}_{\alpha\beta\gamma}\,n^{j}_{\dot{\sigma}} + G^{\hat{\mathfrak{d}}\hat{\sigma}}\,g_{ij}\,\Lambda^{i}_{\alpha\beta}\,n^{j}_{\dot{\sigma}\gamma}\,,\\ &G_{\hat{\alpha}\hat{\beta},\,\gamma} = 2g_{ij}\,n^{i}_{(\hat{\alpha}}\,n^{j}_{\beta)\,\gamma}\,,\qquad G^{\hat{\alpha}\hat{\beta}}_{\dots,\,\gamma} = -G^{\hat{\alpha}\hat{\sigma}}\,G^{\hat{\beta}\hat{\tau}}\,G_{\hat{\sigma}\hat{\tau},\,\gamma}\,,\\ &n^{\mathfrak{g}}_{\alpha\beta,\,\gamma} = G^{\mathfrak{d}\hat{\sigma}}_{\dots,\,\sigma}\,g_{ij}\,n^{i}_{\hat{\sigma}\beta}\,n^{j}_{\dot{\sigma}} + G^{\hat{\mathfrak{d}}\hat{\sigma}}\,g_{ij}\,n^{i}_{\hat{\sigma}\beta\gamma}\,n^{j}_{\dot{\sigma}} + G^{\hat{\mathfrak{d}}\hat{\sigma}}\,g_{ij}\,n^{i}_{\dot{\sigma}\beta\gamma}\,n^{j}_{\dot{\sigma}}\,,\\ &\nabla^{i}_{\alpha\beta} = n^{i}_{\alpha\beta\gamma}\,\Theta^{\gamma}\,,\qquad n^{i}_{\hat{\alpha}[\beta\gamma]} = -R^{i}_{kpq}\,n^{k}_{\alpha}\,\Lambda^{p}_{\beta}\,\Lambda^{q}_{\gamma}\,. \end{split}$$

Из полученных дифференциальных уравнений следует, что величины $\Gamma^{\alpha}_{\beta\gamma}$ образуют об'ект аффинной связности, $b^{\gamma}_{\alpha\beta}$ — систему тензоров, $n^{\gamma}_{\alpha\beta}$ — тоже систему тензоров*. Об'ект $\Gamma^{\gamma}_{\alpha\beta}$ назовем об'ектом индуцированной связности поверхности, систему тензоров $b^{\gamma}_{\alpha\beta}$ — основной системой асимптотических тензоров, $n^{\gamma}_{\alpha\beta}$ — основной системой нормальных тензоров (ковекторов) рассматриваемой поверхности.

Система величин

$$\lambda_{\alpha\hat{\beta}} = a_{ij} \, \Lambda_{\alpha}^{i} \, n_{\hat{\beta}}^{j} \tag{82}$$

является решением системы

$$\nabla \lambda_{\alpha \hat{\alpha}} = (a_{ii} \Lambda_{\alpha \gamma}^{i} n_{\hat{\alpha}}^{i} + a_{ii} \Lambda_{\alpha}^{i} n_{\hat{\alpha} \gamma}^{j}) \Theta^{\gamma},$$

т. е. образует систему тензоров, которую назовём основной системой ковекторов поверхности \mathfrak{H}_m . Тензор кручения и тензор кривизны (тензор Римана—Кристоффеля) об'екта индуцированной связности поверхности \mathfrak{H}_m имеют вид:

$$R_{\alpha\beta}^{\gamma} = G^{\gamma\sigma} g_{jj} R_{pq}^{i} \Lambda_{\alpha}^{p} \Lambda_{\beta}^{q} \Lambda_{\sigma}^{j},$$

$$R_{\alpha\beta\gamma}^{\epsilon} = -\Gamma_{\alpha[\beta,\gamma]}^{\epsilon} - \Gamma_{\sigma[\beta}^{\epsilon} \Gamma_{|\alpha|\gamma]}^{i}.$$
(83)

9. Условия совместности деривационных уравнений. Альтернация уравнений (74) по индексам α и β , в силу (16), даёт

$$R_{pq}^{i} \Lambda_{\alpha}^{p} \Lambda_{\beta}^{q} = R_{\alpha\beta}^{\gamma} \Lambda_{\gamma}^{i} + G^{\hat{\alpha}\hat{p}} g_{jk} R_{pq}^{j} \Lambda_{\alpha}^{p} \Lambda_{\beta}^{q} n_{\hat{a}}^{k} n_{\hat{a}}^{i}. \tag{84}$$

Эти уравнения назовем обобщенными уравнениями Риччи поверхности** \mathfrak{H}_m . Продолжая уравнения (74), получим

$$R_{kpq}^{i} \Lambda_{\alpha}^{k} \Lambda_{\beta}^{p} \Lambda_{\gamma}^{q} = (R_{\alpha\beta\gamma}^{\sigma} - b_{\alpha\beta}^{\hat{z}} b_{|\hat{z}|\gamma}^{\sigma}) \Lambda_{\sigma}^{i} - (\Gamma_{[\gamma} b_{|\alpha|\beta]}^{\hat{\sigma}} - b_{\alpha\rho}^{\hat{\sigma}} R_{\beta\gamma}^{\hat{\sigma}}) n_{\hat{\sigma}}^{i}, \tag{85}$$

где $\nabla_{\Upsilon}^{\Gamma}$ — знак неголономной ковариантной производной относительно индуцированной связности. Отсюда получаются обобщенные уравнения Гаусса:

$$g_{ij} R^i_{kn\alpha} \Lambda^j_{\tau} \Lambda^k_{\alpha} \Lambda^p_{\beta} \Lambda^q_{\gamma} = G_{\tau\alpha} (R^{\alpha}_{\alpha\beta\gamma} - b^{\mathfrak{F}}_{\alpha\beta\delta} b^{\alpha}_{i\mathfrak{F}^{1}\gamma}) \tag{86}$$

и обобщенные уравнения Петерсона—Кодацци—Майнарди:

$$g_{ij} R_{hpq}^i n_2^j \Lambda_{\alpha}^k \Lambda_{\beta}^p \Lambda_{\gamma}^q = G_{\hat{\epsilon}\hat{\rho}} \left(b_{\alpha\sigma}^{\hat{\rho}} R_{\beta\gamma}^{\sigma} - \nabla_{i\gamma}^{\Gamma} b_{|\alpha|\beta}^{\hat{\rho}} \right). \tag{87}$$

Продолжение уравнений (75), записанных в координатной форме, дает

$$n_{\hat{\alpha}\beta\gamma}^{i} = (\stackrel{\Gamma}{\nabla}_{\gamma} b_{\hat{\alpha}\beta}^{\sigma} + b_{\hat{\alpha}\epsilon}^{\sigma} \Gamma_{\beta\gamma}^{\epsilon} + n_{\hat{\alpha}\beta}^{\hat{\rho}} b_{\beta\gamma}^{\sigma}) \Lambda_{\sigma}^{i} + (\stackrel{\Gamma}{\nabla}_{\gamma} n_{\hat{\alpha}\beta}^{\hat{\rho}} + n_{\hat{\alpha}\rho}^{\hat{\rho}} \Gamma_{\beta\gamma}^{\rho} + b_{\hat{\alpha}\beta}^{\rho} b_{\alpha\gamma}^{\hat{\rho}} + n_{\hat{\beta}\rho}^{\hat{\rho}} n_{\hat{\beta}\gamma}^{\hat{\rho}}) n_{\hat{\rho}}^{i}.$$

$$(88)$$

^{*} Об'ект аффинной связности многообразия пространств $\{N_{n-m}(v)\}$

Они эквивалентны соотношениям (83₁).

Альтернируя эти уравнения по индексам β и ү, мы получим

$$\begin{split} &-R^{i}_{kpq}\,n^{k}_{\hat{\mathbf{a}}}\,\Lambda^{p}_{\beta}\,\Lambda^{q}_{\gamma} = (\overset{\Gamma}{\nabla}_{[\gamma}\,b^{\sigma}_{\,|\hat{\mathbf{a}}\,|\,\beta]} - b^{\sigma}_{\hat{\mathbf{a}}e}\,R^{e}_{\,\beta\gamma} + n^{\hat{\mathbf{a}}}_{\hat{\mathbf{a}}[\hat{\mathbf{b}}}\,b^{\sigma}_{\,|\hat{\mathbf{a}}\,|\,\gamma]})\,\Lambda^{i}_{\sigma} + \\ &+ (\nabla_{[\gamma}\,n^{\hat{\mathbf{a}}}_{\,|\hat{\mathbf{a}}\,|\,\beta]} - n^{\hat{\mathbf{a}}}_{\hat{\mathbf{a}}e}\,R^{e}_{\,\beta\gamma} + b^{e}_{\,\hat{\mathbf{a}}[\hat{\mathbf{b}}}\,b^{\hat{\mathbf{a}}}_{\,|\,\rho|\,\gamma]} + n^{\hat{\mathbf{e}}}_{\hat{\mathbf{a}}[\hat{\mathbf{b}}}\,n^{\hat{\mathbf{a}}}_{\,|\,\rho|\,\gamma]})\,n^{i}_{\hat{\mathbf{a}}}\,. \end{split}$$

і Эти уравнения, в силу (4) и (80), эквивалентны уравнениям (87) и

$$g_{ij}\,R^{i}_{kpq}\,n^{j}_{\hat{\rho}}\,n^{k}_{\hat{\alpha}}\,\Lambda^{p}_{\hat{\alpha}}\,\Lambda^{q}_{\hat{\beta}}\, G^{\tau}_{\hat{\gamma}} = G_{\hat{\rho}\hat{\alpha}}\left(\nabla_{[\hat{\rho}}\,n^{\hat{\sigma}}_{|\hat{\alpha}|\,\gamma]} + n^{\hat{\sigma}}_{\hat{\alpha}^{\tau}}\,R^{\tau}_{\hat{\beta}\gamma} - b^{\tau}_{\hat{\alpha}[\hat{\rho}}\,b^{\hat{\sigma}}_{|\hat{\tau}|\,\gamma]} - n^{\hat{\epsilon}}_{\hat{\alpha}[\hat{\rho}}\,n^{\hat{\sigma}}_{|\hat{\epsilon}|\,\beta]}\right)n^{i}_{\hat{\sigma}}\,, \eqno(89)$$

которые назовем обобщенными уравнениями Фосса-Риччи.

. Неголономные ковариантные производные метрических тензоров пространств $H_m(v)$, $N_{n-m}(v)$ и основной системы ковекторов имеют вид

$$\nabla_{\mathbf{y}} H_{\alpha \hat{\mathbf{s}}} = 2\lambda_{[\alpha \mid \hat{\mathbf{s}} \mid \hat{\mathbf{b}}_{\hat{\mathbf{s}}]\mathbf{y}}, \tag{90}$$

$$\nabla_{\mathbf{Y}}^{\Gamma} k_{\hat{\mathbf{a}}\hat{\mathbf{G}}} = 2\lambda_{\sigma \hat{\mathbf{G}}\hat{\mathbf{G}}} b_{\hat{\mathbf{a}}\hat{\mathbf{I}}\mathbf{Y}}^{\sigma} + k_{\hat{\mathbf{G}}\hat{\mathbf{G}}} n_{\hat{\mathbf{a}}\mathbf{Y}}^{\hat{\sigma}} + k_{\hat{\mathbf{a}}\hat{\mathbf{G}}} n_{\hat{\mathbf{a}}\mathbf{Y}}^{\hat{\sigma}}, \tag{91}$$

$$\nabla_{\mathbf{r}} \lambda_{\alpha \hat{\mathbf{n}}} = (\delta_{\hat{\mathbf{n}}}^{\hat{\mathbf{r}}} k_{[\alpha \tau]} - k_{[\hat{\mathbf{n}}\hat{\mathbf{n}}]} G^{\hat{\mathbf{n}}\hat{\mathbf{r}}} G_{\alpha \mathbf{m}}) b_{\hat{\mathbf{r}}\mathbf{r}}^{\tau} + \lambda_{\alpha \hat{\mathbf{n}}} n_{\hat{\mathbf{n}}\mathbf{r}}^{\hat{\mathbf{r}}}, \tag{92}$$

где

$$k_{\widehat{\alpha}\widehat{\beta}} = h_{ij} n_{\widehat{\alpha}}^i n_{\widehat{\beta}}^j$$
.

10. Правый сопровождающийся репер поверхности \mathfrak{H}_m . Совокупность векторов $M=M^i\,e_i$ пространства $H_m(v)$, координаты которых являются решением системы

$$h_{ii} \Lambda^i_{\alpha} M^j = 0 (93)$$

образуют подпространство $\mathfrak{M}_{n-m}(v)$. Так как

$$H_m(v) + \mathfrak{M}_{n-m}(v) = H_n(v), \qquad H_m(v) \cap \mathfrak{M}_{n-m}(v) = A,$$

то пространство $\mathfrak{M}_{n-m}(v)$ определяет оснащенные поверхности \mathfrak{H}_m и его назовем правым нормальным пространством рассматриваемой поверхности. Пусть линейно независимые решения $M_{\hat{a}}^i$ системы (93) выбраны так, что $g_{ij}M_{\hat{a}}^iM_{\hat{\beta}}^j=1$. Таким образом в каждой точке поверхности \mathfrak{H}_m имеем n линейно независимых векторов Λ_{α} и $M_{\hat{a}}=M_{\hat{a}}^ie_i$. Эти векторы образуют репер $\{A,\Lambda_{\alpha},M_{\hat{a}}\}$, который будем называть правым сопровождающим репером поверхности \mathfrak{H}_m . Величины $M_{\hat{a}}^i$ являются решением системы

$$\nabla M_{\hat{\mathbf{a}}}^{l} = M_{\hat{\mathbf{a}}\gamma}^{l} \, \Theta^{\gamma} \,, \tag{94}$$

а метрический тензор пространства $\mathfrak{M}_{\varrho^{-m}}(v)$ имеет вид

$$K_{\widehat{\mathbf{a}}\widehat{\mathbf{\beta}}} = h_{ij} \ M_{\widehat{\mathbf{a}}}^i \ M_{\widehat{\mathbf{\beta}}}^j \ . \tag{95}$$

Связность на поверхности, установленную проектированием вдоль пространства $\mathfrak{M}_{n-m}(v)$, назовем правой индуцированной связностью.

11. Правые деривационные формулы Гаусса—Вейнгартена. Эти формулы получим, разлагая векторы $\Lambda^i_{gg}e_i$ и $M^i_{gg}e_i$ по векторам репера $\{A, \Lambda_a, M_g\}$:

$$\Lambda_{\alpha\beta}^{i} e_{i} = \Pi_{\alpha\beta}^{\gamma} \Lambda_{\gamma}^{i} + p_{\alpha\beta}^{\hat{\gamma}} M_{\hat{\gamma}}, \qquad (96)$$

$$M_{\hat{\alpha}\beta}^{I} e_{i} = p_{\hat{\alpha}\beta}^{\gamma} \Lambda_{\gamma} + M_{\hat{\alpha}\beta}^{\gamma} M_{\gamma}, \qquad (97)$$

где

$$\Pi_{\alpha\beta}^{\gamma} = H^{\gamma\sigma} h_{ii} \Lambda_{\alpha}^{i} \Lambda_{\alpha\beta}^{j}, \qquad (98)$$

$$p_{\alpha\beta}^{\hat{\gamma}} = K^{\hat{\gamma}\hat{\rho}} h_{ii} \Lambda_{\alpha\beta}^{i} M_{\hat{\rho}}^{i}, \tag{99}$$

$$p_{\hat{\mathbf{a}}\beta}^{\hat{\mathbf{\gamma}}} = -K_{\hat{\mathbf{a}}\hat{\mathbf{p}}} H_{\mathbf{\gamma}}^{\mathbf{\gamma}\sigma} p_{\sigma\beta}^{\hat{\mathbf{p}}}, \qquad (100)$$

$$K_{\hat{\mathbf{a}}\hat{\mathbf{b}}} K^{\hat{\mathbf{b}}\hat{\mathbf{\gamma}}} = \delta_{\hat{\mathbf{a}}}^{\hat{\mathbf{\gamma}}}, \qquad K_{\hat{\mathbf{\gamma}}\hat{\mathbf{a}}} K^{\hat{\mathbf{b}}\hat{\mathbf{\gamma}}} = \delta_{\hat{\mathbf{a}}}^{\hat{\mathbf{b}}}.$$
 (101)

Так как

$$\nabla \Pi_{\alpha\beta}^{\gamma} + \Theta_{\alpha\beta}^{\gamma} = \Pi_{\alpha\beta,\sigma}^{\gamma} \Theta^{\sigma}, \qquad \nabla p_{\alpha\beta}^{\hat{\gamma}} = p_{\alpha\beta,\sigma}^{\hat{\gamma}} \Theta^{\sigma},$$

где

$$\begin{split} \Pi_{\alpha\beta,\,\sigma}^{\gamma} &= H_{\ldots\,\,\sigma}^{\gamma\rho}\,\,h_{ij}\,\Lambda_{\rho}^{i}\,\Lambda_{\alpha\beta}^{j} + H^{\gamma\rho}\,h_{ij}\,\Lambda_{\rho\sigma}^{i}\,\Lambda_{\alpha\beta}^{j} + H^{\gamma\rho}\,h_{ij}\,\Lambda_{\rho}^{i}\,\Lambda_{\alpha\beta\sigma}^{j}\,, \\ p_{\alpha\beta,\,\gamma}^{\xi} &= K_{\ldots\,\,\gamma}^{\hat{\tau}\hat{\rho}}\,\,h_{ij}\,\Lambda_{\alpha\beta}^{i}\,M_{\hat{\rho}}^{j} + K^{\hat{\tau}\hat{\rho}}\,h_{ij}\,\Lambda_{\alpha\beta}^{i}\,M_{\hat{\rho}\gamma}^{j}\,, \\ K_{\ldots\,\,\,\gamma}^{\hat{\alpha}\hat{\rho}} &= -K^{\hat{\alpha}\hat{\sigma}}\,K^{\hat{\rho}\hat{\rho}}\,K_{\hat{\sigma}\hat{\rho},\,\gamma}\,, \end{split}$$

$$K_{\widehat{\alpha}\widehat{\beta}, \gamma} = h_{ij} M_{\widehat{\alpha}\gamma}^i M_{\widehat{\beta}}^j + h_{ij} M_{\widehat{\alpha}}^i M_{\widehat{\beta}\gamma}^j$$

то $\Pi_{\alpha\beta}^{\gamma}$ — об'єкт аффинной связности (правой индуцированной связности), $p_{\alpha\beta}^{\hat{\gamma}}$ — система тензоров (основная система правых асимптотических тензоров). Величины

$$p_{\hat{\mathbf{a}}\beta} = h_{ij} M_{\hat{\mathbf{a}}}^i \Lambda_{\beta}^j \tag{102}$$

удовлетворяют системе

$$\nabla p_{\widehat{\mathbf{a}}\beta} = (h_{ii} M_{\widehat{\mathbf{a}}\gamma}^{i} \Lambda_{\beta}^{j} + h_{ii} M_{\widehat{\mathbf{a}}}^{i} \Lambda_{\beta\gamma}^{j}) \Theta^{\gamma}, \qquad (103)$$

т. е. образуют систему тензоров, которую назовем основной системой правых ковекторов поверхности \mathfrak{H}_m . Тензор правого кручения и правой кривизны поверхности \mathfrak{H}_m имеют вид

$$P_{\alpha\beta\gamma}^{\gamma} = H^{\gamma\sigma} h_{ij} \Lambda_{\sigma}^{i} R_{pq}^{j} \Lambda_{\alpha}^{p} \Lambda_{\beta}^{q},$$

$$P_{\alpha\beta\gamma}^{\sigma} = -\Pi_{\alpha\beta\gamma}^{\sigma} - \Pi_{\alpha\beta\gamma}^{\sigma} \Pi_{|\alpha|\gamma|}^{\sigma}.$$
(104)

12. Условия совместности правых деривационных уравнений. Из уравнений (16) и (96) следует, что правые обобщенные уравнения Риччи для поверхности \mathfrak{H}_m имеют вид (они эквивалентны уравнениям (104₁)):

$$R_{pq}^{i} \Lambda_{\alpha}^{p} \Lambda_{\beta}^{q} = P_{\alpha\beta}^{\gamma} \Lambda_{\gamma}^{i} + K^{\hat{\sigma}\hat{\rho}} h_{jk} R_{pq}^{j} \Lambda_{\alpha}^{p} \Lambda_{\beta}^{q} M_{\hat{\sigma}}^{k} M_{\hat{\sigma}}^{i}. \tag{105}$$

Продолжая уравнения (96), в силу альтернации и линейной независимости векторов e_i , получим

$$R_{k\rho_{\sigma}}^{i} \Lambda_{\alpha}^{k} \Lambda_{\beta}^{p} \Lambda_{\gamma}^{q} = \left(P_{\alpha\beta\gamma}^{\sigma} - \hat{l}_{\alpha\beta}^{\hat{\rho}} l_{1\hat{\sigma},\gamma}^{l}\right) \Lambda_{\sigma}^{i} + \left(\nabla_{[\gamma} l_{1\alpha|\beta]}^{\hat{\rho}} - P_{\beta\gamma}^{\hat{\rho}} l_{\alpha\sigma}^{\hat{\sigma}} + l_{\alpha\beta}^{\hat{\rho}} M_{1\hat{\sigma},\gamma}^{\hat{\sigma}}\right) M_{\hat{\sigma}}^{i}. \tag{106}$$

Эти соотношения эквивалентны правым обобщенным уравнениям Гаусса:

$$h_{ij} \Lambda_{\sigma}^{i} R_{kpq}^{j} \Lambda_{\alpha}^{k} \Lambda_{\beta}^{p} \Lambda_{\gamma}^{q} = H_{\sigma\tau} \left(P_{\alpha\beta\gamma}^{\tau} - \hat{l}_{\alpha[\beta}^{\hat{\rho}} | l_{|\hat{\rho}|\gamma)}^{\tau} \right)$$
(107)

и правым обобщенным уравнениям Петерсона - Кодацци - Майнарди:

$$h_{ij} R_{kpq}^{i} M_{\hat{\mathbf{d}}}^{j} \Lambda_{\alpha}^{k} \Lambda_{\beta}^{p} \Lambda_{\gamma}^{q} = K_{\hat{\mathbf{d}}\hat{\mathbf{d}}}^{q} (\nabla_{[\gamma} \hat{I}_{|\alpha|\beta]}^{\hat{\mathbf{d}}} - P_{\beta\gamma}^{\tau} \hat{I}_{\alpha\tau}^{\hat{\mathbf{b}}} + \hat{I}_{\alpha\beta}^{\hat{\mathbf{d}}} M_{[\hat{\gamma}|\gamma)}^{\hat{\mathbf{b}}}). \tag{108}$$

Условия совместности системы (97) дают правые обобщенные уравнения Фосса — Риччи:

$$h_{ij} R_{kpq}^{i} M_{\hat{\alpha}}^{j} \Lambda_{\hat{\beta}}^{k} \Lambda_{\gamma}^{p} \Lambda_{\epsilon}^{q} = K_{\hat{\theta}\hat{\alpha}} (\nabla_{[\gamma}^{\Pi} M_{|\hat{\beta}|\epsilon]}^{\hat{\theta}} + M_{\hat{\beta}\rho}^{\hat{\sigma}} P_{\gamma\epsilon}^{\rho} - P_{\hat{\beta}[\gamma}^{\hat{\rho}} P_{|\hat{\rho}|\epsilon]}^{\hat{\sigma}} - M_{\hat{\beta}[\gamma}^{\hat{\sigma}} M_{|\hat{\rho}|\epsilon]}^{\hat{\sigma}}). \tag{109}$$

Неголономные ковариантные производные тензоров $H_{\alpha\beta}$, $K_{\hat{\alpha}\hat{\beta}}$ и $p_{\hat{\alpha}\beta}$ имеют вид:

$$\nabla_{\mathsf{Y}} H_{\alpha\beta} = p_{\alpha\beta}^{\hat{\mathfrak{g}}} p_{\hat{\mathfrak{g}}\hat{\mathfrak{g}}}, \tag{110}$$

$$\nabla_{\mathbf{Y}}^{\Pi} K_{\hat{\mathbf{\alpha}}\hat{\mathbf{\beta}}} = p_{\hat{\mathbf{\alpha}}\sigma} p_{\hat{\mathbf{\beta}}\mathbf{Y}}^{\mathbf{S}} + K_{\hat{\mathbf{\alpha}}\hat{\mathbf{\sigma}}} M_{\hat{\mathbf{\beta}}\mathbf{Y}}^{\hat{\mathbf{\sigma}}} + K_{\hat{\mathbf{\sigma}}\hat{\mathbf{\beta}}} p_{\hat{\mathbf{\alpha}}\mathbf{Y}}^{\hat{\mathbf{\sigma}}}, \tag{111}$$

$$\nabla_{\mathbf{r}}^{\Pi} p_{\hat{\mathbf{c}}\hat{\mathbf{p}}} = p_{\hat{\mathbf{c}}\mathbf{r}}^{\sigma} H_{\sigma\hat{\mathbf{p}}} + M_{\hat{\mathbf{c}}\mathbf{r}}^{\hat{\mathbf{c}}} p_{\hat{\mathbf{c}}\hat{\mathbf{p}}} + p_{\hat{\mathbf{p}}\mathbf{r}}^{\hat{\mathbf{c}}} K_{\hat{\mathbf{c}}\hat{\mathbf{c}}}. \tag{112}$$

Если пространство \mathfrak{H}_n является обобщенно евклидовым H_n , реперы $\{A, e_i\}$ и $\{A, \Lambda_\alpha\}$ —голономные и репер ортогонального пространства $N_{n-m}(v)$ —ортогональный, то часть результатов этого параграфа совпадают с результатами С. М. Бахраха [1]. В том случае, когда \mathfrak{H}_n является обобщенно римановым пространством с кристоффелевой связностью тензора g_{ij} и реперы $\{A, e_i\}$, $\{A, \Lambda_\alpha\}$ —голономные, теория поверхностей с нормальным оснащением совпадает с теорией поверхностей, которую построил М. Мишра [8]. Так как метрический тензор $H_{\alpha\beta}$ поверхности \mathfrak{H}_n , как это следует из (71₁), (90) и (110), не является ковариантно постоянным относительно связности $(\Theta^\alpha, \varphi^\alpha_\beta)$, то все три геометрии, индуцируемые об'емлющим пространством в \mathfrak{H}_m , в общем случае не являются обобщенно евклидовыми (формы связности φ^α_α построены при помощи одного из об'ектов $L^\alpha_{\alpha\beta}$, $\Gamma^\alpha_{\alpha\beta}$ и $\Pi^\alpha_{\alpha\beta}$).

§ 3. Соприкасающиеся плоскости поверхности

1. Формы связности поверхности. Если на поверхности \mathfrak{H}_m определена связность $(\Theta^{\alpha}, \ \phi^{\alpha}_{\mathfrak{p}})$, то отображение соседних локальных касательных пространств $H_m(v)$ определяются соотношениями

$$A(v+dv) \to A(v, dv) = \Theta^{\alpha} \Lambda_{\alpha} + \dots,$$

$$\Lambda_{\alpha}(v+dv) \to \Lambda_{\alpha}(v, dv) = \Lambda_{\alpha} + \varphi_{\alpha}^{\beta} \Lambda_{\beta} + \dots,$$
(113)

где пфаффовые формы ϕ_{π}^{β} имеют следующий вид

Так как об'екты $L_{\alpha\beta}^{\gamma}$, $\Gamma_{\alpha\beta}^{\gamma}$ и $\Pi_{\alpha\beta}^{\gamma}$ преобразуются по закону (54), то формы φ_{α}^{β} , как это следует из (22), (27) и (54), преобразуются следующим образом:

$$\varphi_{\alpha'}^{\beta'} = B_{\gamma}^{\beta'} dB_{\alpha'}^{\gamma} + B_{\beta}^{\beta'} B_{\alpha'}^{\alpha} \varphi_{\alpha}^{\beta}. \tag{115}$$

2. Соприкасающиеся плоскости. Если в каждом $H_n(v)$ рассматривать векторы

$$\Lambda_{\alpha\beta} = \Lambda_{\alpha\beta}^{i} e_{i}, \qquad (116)$$

которые при (21) преобразуются по закону

$$\Lambda_{\alpha'\beta'} = B_{\alpha'}^{\alpha} B_{\beta'}^{\beta} \Lambda_{\alpha\beta} + B_{\alpha'\beta'}^{\gamma} \Lambda_{\gamma},$$

то совокупность векторов $(\Lambda_{\alpha}, \Lambda_{\alpha\beta})$ определяет инвариантное подпространство $H_{n_1}(v)$ пространства $H_n(v)$, где $n_1=m+m_1$, а m_1 —число линейно независимых векторов $\Lambda_{\alpha\beta}$. Пространство $H_{n_1}(v)$ будем называть первой соприкасающейся плоскостью поверхности $\mathfrak{H}_{n_1}(v)$ в точке A. Так как при последовательном продолжении системы (11) получается система величин $\Lambda^i_{\alpha_1\alpha_1}$, $\Lambda^i_{\alpha_1\alpha_2\alpha_3}$, ..., $\Lambda^i_{\alpha_1\ldots\alpha_n}$, где

$$\Lambda^{i}_{\alpha_{1} \ldots \alpha_{p-1} [\alpha_{p-1} \alpha_{p}]} = -R^{i}_{kpq} \Lambda^{k}_{\alpha_{1} \ldots \alpha_{p-1}} \Lambda^{p}_{\alpha_{p-1}} \Lambda^{q}_{\alpha_{p}},$$

которая образует об'ект, то легко проверить, что совокупность векторов Λ_{α_i} , $\Lambda_{\alpha_i\alpha_i}$, ..., $\Lambda_{\alpha_1\ldots\alpha_p}$, где $\Lambda_{\alpha_1\ldots\alpha_p}=\Lambda_{\alpha_1\ldots\alpha_p}^ie_i$, определяет инвариантное подпространство $H_{n_p}(v)$ пространства $H_n(v)$ $(n_p=m+m_p)$, где m_p число линейно независимых векторов системы $\Lambda_{\alpha_1\alpha_i}$, ..., $\Lambda_{\alpha_1\ldots\alpha_p}$, $m_p\leqslant n-m$). Пространство $H_{n_p}(v)$ будем называть p-ой соприкасающейся плоскостью к поверхности \mathfrak{H}_n в точке A.

3. Понятие асимптотического поля многомерных направлений. Если в каждом пространстве $H_n(v)$ задано l-мерное подпространство $H_l(v)$, проходящее через точку A и лежащее в касательной плоскости $H_m(v)$ (соприкасающейся плоскости H_{n_p}), то будем говорить, что на поверхности задано касательное (p-соприкасающееся) поле l-мерных направлений $H_l(v)$. Этим обобщается понятие, соприкасающееся поле однородных пространств [5] для пространства со связностью.

Пусть на поверхности $\mathfrak{H}_{l_1}(v)$ и $H_{l_1}(v)$ которых в точке A определяются векторами $X_{a_1}^{\alpha}\Lambda_{\alpha}$ и $X_{a_2}^{\alpha}\Lambda_{\alpha}$ ($a_1=1,\ 2,\ \ldots,\ l_1;\ a_2=1,\ 2,\ \ldots,\ l_2;\ l_1,\ l_2\leqslant m$). Если отобразим точку A поверхности в пространство $H_n(v+dv)$ вдоль некоторой кривой, лежащей на поверхности, касательная которой лежит в плоскости $H_{l_1}(v)$, то

$$A(v+dv) \to A(v, dv) = \Theta^{\alpha} \Lambda_{\alpha} + \dots = \varphi X_{a_1}^{\alpha} \Lambda_{\alpha} + \dots,$$

$$\Theta^{\alpha} = X_{a_1}^{\alpha} \varphi.$$
(117)

При этом же отображении, главная часть которого определяется при помощи одной из индуцированных связностей, векторы $X^{\alpha}_{a_1} \Lambda_{\alpha}$ пространства $H_{l_1}(v)$ отображаются так

$$X_{a_{s}}^{\alpha}(v+dv)\Lambda_{\alpha}(v+dv) \rightarrow \begin{cases} (x_{a_{s}}^{\alpha}+dx_{a_{s}}^{\alpha}+x_{a_{s}}^{\beta}\overset{L}{\Theta_{\beta}^{\alpha}})\Lambda_{\alpha}+\varphi\left(l_{\alpha\beta}^{\hat{\sigma}}x_{a_{s}}^{\alpha}x_{a_{s}}^{\beta}\right)N_{\hat{\sigma}}+\ldots, \\ (x_{a_{s}}^{\alpha}+dx_{a_{s}}^{\alpha}+x_{a_{s}}^{\beta}\overset{D}{\Theta_{\beta}^{\alpha}})\Lambda_{\alpha}+\varphi\left(l_{\alpha\beta}^{\hat{\sigma}}x_{a_{s}}^{\alpha}x_{a_{s}}^{\beta}\right)N_{\hat{\sigma}}+\ldots, \\ (x_{a_{s}}^{\alpha}+dx_{a_{s}}^{\alpha}+x_{a_{s}}^{\beta}\overset{D}{\Theta_{\beta}^{\alpha}})\Lambda_{\alpha}+\varphi\left(l_{\alpha\beta}^{\hat{\sigma}}x_{a_{s}}^{\alpha}x_{a_{s}}^{\beta}\right)N_{\hat{\sigma}}+\ldots, \end{cases} (118)$$

Отсюда следует, что соприкасающиеся пространства, определяемые векторами Λ_{α} и $I_{\alpha\beta}^{\sigma} x_{a_1}^{\alpha} x_{a_1}^{\beta} N_{\hat{\sigma}}$, Λ_{α} и $b_{\alpha\beta}^{\hat{\sigma}} x_{a_1}^{\alpha} x_{a_1}^{\beta} n_{\hat{\sigma}}$, Λ_{α} и $p_{\alpha\beta}^{\hat{\sigma}} x_{a_1}^{\alpha} x_{a_1}^{\beta} M_{\hat{\sigma}}$ не зависят от выбора базисных векторов пространств $H_{l_1}(v)$ и $H_{l_1}(v)$ и $H_{l_1}(v)$ и зависят от ориентации пары пространств $H_{l_1}(v)$ и $H_{l_1}(v)$. Соприкасающееся пространство $\{\Lambda_{\alpha}$, $I_{\alpha\beta}^{\hat{\sigma}} x_{a_1}^{\alpha} x_{a_1}^{\alpha} N_{\hat{\sigma}}\}$ назовем левым соприкасающимся полем, присоединенным к упорядоченной паре касательных полей $H_{l_1}(v)$ и $H_{l_1}(v)$. Аналогичным образом определяются присоединенное поле и правое присоединенное поле упорядоченной пары касательных полей $H_{l_1}(v)$ и $H_{l_1}(v)$. Два касательных к \mathfrak{H}_{m} поля направлений $H_{l_1}(v)$ и $H_{l_1}(v)$ назовем лево-сопряженными (сопряженными или право-сопряженными) на поверхности \mathfrak{H}_{m} , если левое соприкасающееся (соприкасающееся или правое соприкасающееся) поле, присоединенное к ним, совпадает с полем касательных плоскостей $H_{m}(v)$ поверхности \mathfrak{H}_{m} , т. е.

$$l_{\alpha\beta}^{\hat{\sigma}} x_{a_{1}}^{\alpha} x_{a_{1}}^{\beta} = 0 \ (b_{\alpha\beta}^{\hat{\sigma}} x_{a_{1}}^{\alpha} x_{a_{1}}^{\beta} = 0$$
 или $p_{\alpha\beta}^{\hat{\sigma}} x_{a_{1}}^{\alpha} x_{a_{1}}^{\beta} = 0$). (119)

Касательное к \mathfrak{H}_m поле направлений $H_l(v)$ называется левым асимптотическим (асимптотическим или правым асимптотическим) полем направлений, если оне самосопряжено. Отсюда следует, что поле одномерных касательных направлений $H_1(v)$, определяемых вектором $x^{\alpha}\Lambda_{\alpha}$, является левым

т. е.

^{2.} Lietuvos matematikos rinkinys

асимптотическим (асимптотическим и правым асимптотическим) тогда и только тогда, когда

$$l_{(\alpha\beta)}^{\hat{\sigma}}\,x^{\alpha}\,x^{\beta}=0\,(b_{(\alpha\beta)}^{\hat{\sigma}}\,x^{\alpha}\,x^{\beta}=0$$
 или $p_{(\alpha\beta)}^{\hat{\sigma}}\,x^{\alpha}\,x^{\beta}=0).$ (120)

Эти уравнения определяют в $\boldsymbol{H}_m(v)$ следующие линейные системы конусов второго порядка (левых асимптотических, асимптотических):

$$\lambda_{\hat{\sigma}} l_{(\alpha\beta)}^{\hat{\sigma}} x^{\alpha} x^{\beta} = 0, \qquad \mu_{\hat{\sigma}} b_{(\alpha\beta)}^{\hat{\sigma}} x^{\alpha} x^{\beta} = 0, \qquad \nu_{\hat{\sigma}} p_{(\alpha\beta)}^{\hat{\sigma}} x^{\alpha} x^{\beta} = 0. \tag{121}$$

§ 4. Кривые на поверхности \mathfrak{H}_m

1. Основные уравнения. Дифференциальные уравнения кривой K на поверхности \mathfrak{H}_m пространства \mathfrak{H}_n имеют вид:

$$\Theta^{\alpha} = x_{(1)}^{\alpha} ds, \tag{122}$$

где ds – дифференциал дуги кривой K. Дифференциальные уравнения этой же кривой в пространстве \mathfrak{H}_n можно представить следующим образом

$$\omega^i = y_{(1)}^i ds, \tag{123}$$

где

$$y_{(1)}^i = \Lambda_\alpha^i \, x_{(1)}^\alpha \,. \tag{124}$$

В зависимости от того, с какой связностью рассматривается поверхность $\hat{\mathfrak{H}}_m$ в \mathfrak{H}_n , продолжение уравнений (122) и (123) дают:

$$\nabla y_{(j)}^{i} = y_{(j+1)}^{i} \, ds, \tag{125}$$

$$\nabla x_{(j)}^{\alpha} = x_{(j+1)}^{\alpha} ds, \qquad (126)$$

$$\overset{\Gamma}{\nabla} x_{(f)}^{\alpha} = \overset{\Gamma}{x_{(f+1)}} ds, \tag{127}$$

$$\overset{\Pi}{\nabla} x^{\alpha}_{(J)} = \overset{\Pi}{x^{\alpha}_{(J+1)}} ds. \tag{128}$$

Дифференцируя уравнения (124), в силу (42) и (126) [(74) и (127) или (96) и (128)], получаем

$$y_{(2)}^{i} = N_{\hat{\sigma}}^{i} l_{(\alpha\beta)}^{\hat{\sigma}} x_{(1)}^{\alpha} x_{(1)}^{\beta} + \Lambda_{\alpha}^{i} x_{(2)}^{L_{\alpha}}, \qquad (129)$$

$$y_{(2)}^{i} = n_{6}^{i} b_{(\alpha\beta)}^{\hat{\sigma}} x_{(1)}^{\alpha} x_{(1)}^{\beta} + \Lambda_{\alpha}^{i} x_{(2)}^{\Gamma}, \qquad (130)$$

$$y_{(2)}^{i} = M_{\hat{\sigma}}^{i} p_{(\alpha\beta)}^{\hat{\sigma}} x_{(1)}^{\alpha} x_{(1)}^{\beta} + \Lambda_{\alpha}^{i} x_{(2)}^{\Pi_{\alpha}}.$$
 (131)

Системы величин

$$l_{\alpha\beta}^{i} = N_{\hat{\sigma}}^{i} l_{(\alpha\beta)}^{\hat{\sigma}}, \quad b_{\alpha\beta}^{i} = n_{\hat{\sigma}}^{i} b_{(\alpha\beta)}^{\hat{\sigma}}, \quad p_{\alpha\beta}^{i} = M_{\hat{\sigma}}^{i} p_{(\alpha\beta)}^{\hat{\sigma}}$$
(132)

образуют смешанные тензоры, которые будем называть, соответственно, аффинором левой кривизны, аффинором кривизны и аффинором правой кривизны поверхности \mathfrak{H}_m по отношению к \mathfrak{H}_n . Оказывается, что

$$h_{ij} l_{\alpha\beta}^i \Lambda_{\gamma}^j = 0, \quad g_{ij} b_{\alpha\beta}^i \Lambda_{\gamma}^j = 0, \quad h_{ij} \Lambda_{\gamma}^i p_{\alpha\beta}^j = 0.$$
 (133)

2. Кривизны кривой. В каждом локальном пространстве $H_n(v)$ векторы

$$y_1 = y_{(1)}^i e_i$$
, $y_2 = y_{(2)}^i e_i$

образуют двухмерное соприкасающееся пространство кривой K в точке A. Векторы первой левой кривизны, первой кривизны и первой правой кривизны кривой K по отношению к \mathfrak{H}_n имеют вид [3]:

$$N_2 = \begin{vmatrix} \lambda_{11} & y_1 \\ \lambda_{21} & y_2 \end{vmatrix}, \tag{134}$$

$$T_2 = \begin{vmatrix} \alpha_{11} & y_1 \\ \alpha_{21} & y_2 \end{vmatrix}, \tag{135}$$

$$M_2 = \begin{vmatrix} \lambda_{11} & \lambda_{12} \\ \nu_1 & \nu_2 \end{vmatrix}, \tag{136}$$

где

$$\lambda_{ij} = h_{pq} y_{(i)}^p y_{(j)}^q, \quad \alpha_{ij} = g_{pq} y_{(i)}^p y_{(j)}^q.$$

Эти векторы, как и при m=n-1, будем называть, соответственно, вектором левой абсолютной кривизны, вектором абсолютной кривизны и вектором правой абсолютной кривизны кривой K.

Кривая K по отношению к поверхности \mathfrak{H}_m имеет три вектора первых кривизн:

1. Вектор первой левой кривизны

который будем называть вектором левой относительной кривизны:

2. Вектор первой кривизны

$$T_{2} = \begin{vmatrix} G_{\alpha\beta} x_{(1)}^{\alpha} x_{(2)}^{\beta} & x_{(1)}^{\alpha} \Lambda_{\alpha} \\ G_{\alpha\beta} x_{(2)}^{\alpha} x_{(1)}^{\beta} & x_{(2)}^{\alpha} \Lambda_{\alpha} \end{vmatrix},$$
(138)

который назовем вектором относительной кривизны,

3. Вектор первой правой кривизны

который будем называть вектором правой относительной кривизны. Из формул (134)—(138), в силу (132), следует, что

$$N_{2}^{i} = l_{\alpha\beta}^{i} x_{(1)}^{\alpha} x_{(1)}^{\beta} + N_{2}^{i},$$

$$T_{2}^{i} = b_{\alpha\beta}^{i} x_{(1)}^{\alpha} x_{(1)}^{\beta} + T_{2}^{i},$$

$$M_{2}^{i} = p_{\alpha\beta}^{i} x_{(1)}^{\alpha} x_{(1)}^{\beta} + M_{2}^{i},$$
(140)

где

$$\begin{split} & \overset{L}{N_{2}^{i}} = \overset{L}{y_{(2)}^{i}} - H_{\alpha\beta} \overset{L}{x_{(2)}^{\alpha}} x_{(1)}^{\beta} y_{(1)}^{i} \,, \\ & \overset{\Gamma}{T_{2}^{i}} = \overset{\Gamma}{y_{(2)}^{i}} - G_{\alpha\beta} \overset{\Gamma}{x_{(2)}^{\alpha}} x_{(1)}^{\beta} y_{(1)}^{i} \,, \\ & \overset{\Pi}{M_{2}^{i}} = \overset{\Pi}{y_{(2)}^{i}} - H_{\alpha\beta} \overset{\Pi}{x_{(1)}^{\alpha}} \overset{\Pi}{x_{(2)}^{\beta}} y_{(1)}^{i} \,. \end{split}$$

Векторы

$$l_2^i = l_{\alpha\beta}^i x_{(1)}^{\alpha} x_{(1)}^{\beta}, \quad b_2^i = b_{\alpha\beta}^i x_{(1)}^{\alpha} x_{(1)}^{\beta}, \quad p_2^i = p_{\alpha\beta}^i x_{(1)}^{\alpha} x_{(1)}^{\beta}, \quad (141)$$

соответственно, будем называть вектором левой нормальной кривизны, вектором нормальной кривизны и вектором правой нормальной кривизны кривой *К*. Отсюда вытекает

Теорема 1. Вектор левой абсолютной кривизны (абсолютной кривизны, правой абсолютной кривизны) равен сумме вектора левой относительной кривизны (относительной кривизны, правой относительной) и вектора левой нормальной кривизны (нормальной кривизны, правой нормальной кривизны).

Легко доказывается и

Теорема 2. Вектор левой нормальной кривизны (нормальной кривизны, правой нормальной кривизны) кривой K на \mathfrak{H}_m ортогонален слева (ортогонален, ортогонален справа) к \mathfrak{H}_m .

Скаляры

$$\frac{1}{R_n} = \sqrt{g_{ij} \, l_2^i \, l_2^j}, \quad \frac{1}{R_t} = \sqrt{g_{ij} \, b_2^i \, b_2^j}, \quad \frac{1}{R_m} = \sqrt{g_{ij} \, p_2^i \, p_2^j} \tag{142}$$

назовем, соответственно, левой нормальной кривизной, нормальной кривизной и правой нормальной кривизной кривой K. Если m=n-1, то $R_n=R_m$. Скаляры k_1 и χ_1 , определенные следующим образом

$$k_1 = \sqrt{g_{ij} N_2^i N_2^j}, \quad \chi_1 = \sqrt{g_{ij} T_2^i T_2^j},$$
 (143)

будем называть, соответственно, левой (правой) абсолютной и абсолютной кривизной кривой K, ибо $|N_2| = |T_2|$. Скаляры k_1^L , χ_1^Γ и k_1^Π , т. е. длины векторов относительных кривизн, назовем, соответственно, левой относительной кривизной и правой относительной кривизной кривизной кривизной K.

3. Формулы Менье. Если ввести величины r_1 , ρ_1 , r_1^L , ρ_1^Γ , r_1^Π :

$$k_1 r_1 = 1, \quad \chi_1 \rho_1 = 1, \quad k_1^L r_1^L = 1, \quad \chi_1^{\Gamma} \rho_1^{\Gamma} = 1, \quad k_1^{\Pi} r_1^{\Pi} = 1,$$

то (140) можно переписать так

$$\frac{n_{2}^{i}}{r_{1}} = \frac{l_{2}^{i}}{R_{n}} + \frac{l_{n_{2}}^{i}}{r_{1}^{L}},
\frac{t_{2}^{i}}{\rho_{1}} = \frac{b_{2}^{i}}{R_{t}} + \frac{t_{2}^{i}}{\rho_{1}^{\Gamma}},
\frac{m_{2}^{i}}{r_{1}} = \frac{p_{2}^{i}}{R_{m}} + \frac{m_{2}^{i}}{m_{2}^{\Pi}},$$
(144)

где

$$n_2^i = r_1 N_2^i, \quad n_2^i = r_1^L N_2^i, \quad \dots, \quad m_2^{\Pi_i} = r_1^{\Pi} M_2^i.$$

Так как векторы y_1 и y_2 лежат в $H_m(v)$, то, умножая равенство (144 $_1$) на $h_{ij}\,l_2^i$, получим

$$\frac{1}{R_n} = \frac{\cos \varphi}{r_1} , \qquad (145)$$

где ϕ — обобщенный евклидовый угол между векторами l_2^i e_i и n_2^i e_i . Полученное равенство представляет обобщение формулы Менье, и. её будем называть левой формулой Менье. Аналогично получается формула Менье

$$\frac{1}{1} = \frac{\cos \varphi_{\Gamma}}{\varphi_{\Gamma}} \tag{146}$$

и правая формула Менье

$$\frac{1}{R_m} = \frac{\cos \psi}{r_1} , \qquad (147)$$

где ϕ_{Γ} — евклидовый угол между векторами $t_2^i e_i$ и $b_2^i e_i$, ψ — обобщенный евклидовый угол между $m_2^i e_i$ и $p_3^i e_i$. Из формул (145), (146) и (147) следует

Теорема 3. Левая проекция (проекция, правая проекция) вектора левой абсолютной кривизны (абсолютной кривизны, правой абсолютной кривизны) кривой на поверхности \mathfrak{H}_m в точке A на левое нормальное пространство (нормальное пространство, правое нормальное пространство) к \mathfrak{H}_m постояна для всех кривых поверхности, проходящих через точку A и имеющих общую касательную.

4. Геодезические и асимптотические кривые. Если локальная развертка кривой K в \mathfrak{H}_n относительно некоторой связности является прямой, то кривая называется геодезической кривой этой связности. Оказывается, что кривая K является геодезической кривой тогда и только тогда, когда векторы y_1 и y_2 – коллинеарны. Очевидно, что все три абсолютные кривизны геодезической кривой равны нулю. Аналогично характеризуются и геодезические кривые поверхности. Из выведеных выше формул (140) следует

Теорема 4. Кривая K на поверхности \mathfrak{H}_m тогда и только тогда является L-геодезической (Γ -геодезической, Π -геодезической) кривс**й** поверхности \mathfrak{H}_m , когда вектор левой абсолютной кривизны (абсолютной кривизны, правой абсолютной кривизны) этой кривой перпендикулярен слева (перпендикулярен, перпендикулярен справа) к поверхности \mathfrak{H}_m .

Кривые поверхности \mathfrak{H}_m , для которых левая нормальная кривизна (нормальная кривизна, правая нормальная кривизна) равна нулю, обладают тем свойством, что касательные векторы $x_{(1)}^{\alpha}\Lambda_{\alpha}$ принадлежат левым асимптотическим конусам (асимптотическим конусам, правым асимптотическим конусам). Такие кривые будем называть, асимптотическими кривыми поверхности \mathfrak{H}_m . Рассмотрим следующие биквадратичные дифференциальные формы:

$$\chi_{L} = g_{ij} l_{\alpha\beta}^{i} l_{\gamma\epsilon}^{j} \Theta^{\alpha} \Theta^{\beta} \Theta^{\gamma} \Theta^{\epsilon},$$

$$\chi_{\Gamma} = g_{ij} b_{\alpha\beta}^{i} b_{\gamma\epsilon}^{j} \Theta^{\alpha} \Theta^{\beta} \Theta^{\gamma} \Theta^{\epsilon},$$

$$\chi_{\Pi} = g_{ij} p_{\alpha\beta}^{i} p_{\gamma\epsilon}^{j} \Theta^{\alpha} \Theta^{\beta} \Theta^{\gamma} \Theta^{\epsilon}.$$
(148)

Следует заметить, что значения этих дифференциальных форм не зависят от выбора реперов в нормальных пространствах поверхности. Такие кривые поверхности \mathfrak{H}_m , которые обращают в нуль форму χ_L (χ_{Γ} , χ_{Π}), назовем левыми асимптотическими кривыми (асимптотическими кривыми, правыми асимптотическими кривыми) в смысле Фосса. Из (120) и (148) следует

Теорема 5. Левые асимптотические кривые (асимптотические кривые, правые асимптотические кривые) поверхности \mathfrak{H}_m являются левыми асимптотическими (асимптотическими, правыми асимптотическими) кривыми в смысле Фосса той же поверхности.

Обратная теорема справедлива только в том случае, когда квадратичная форма $\underline{g_{ii}}\,\omega^i\,\omega^j$ положительно-определенная. Легко доказывается следующая

Теорема 6.-Если левая асимптотическая (асимптотическая, правая асимптотическая) кривая совпадает с L-геодезической (Γ -геодезической, Π -геодезической) кривой поверхности \mathfrak{H}_m , то она является геодезической кривой пространства \mathfrak{H}_n и наоборот.

Из формул (144) следует

Теорема 7. Для того, чтобы \mathfrak{H}_m была вполне L-геодезической (вполне Γ -геодезической), необходимо и достаточно, чтобы

$$l_{\alpha\beta}^{i} = 0 \ (b_{\alpha\beta}^{i} = 0, \quad p_{\alpha\beta}^{i} = 0).$$
 (149)

Если $a_{ij} = 0$ и реперы $\{A, e_i\}$ и $\{A, \Lambda_{\alpha}\}$ — голономные, то результаты этого параграфа совпадают с классическими результатами теории кривых на поверхностях риманова пространства (см. [6], [7]).

Вильнюсский Государственный Педагогический институт

Поступила в редакцию 23.IX.1963

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- С. М. Бахрах. Теория поверхностей обобщенного евклидова пространства, Учен. записки Ярославского гос. пед. ин-та им. К. Д. Ушинского, Математика, 1960, вып. 34, 7—16.
- В. Близникас. Дифференциальная геометрия пространства евклидовой связности, Литовский матем. сборник, 1962, т. 2, № 1, 230—231.
- 3. В. Близникас. Некоторые вопросы геометрии пространств обобщенной евклидовой связности, Литовский матем. сборник, 1962, т. 2, № 2, 15—32.
- 4. В. Близникас. Кривые на гиперповерхности пространства обобщенной евклидовой связности, Литовский матем. сборник, 1963, т. 3, № 1, 21—27.
- Ю. Г. Лумисте. О п-мерных поверхностях с асимптотическими полями р-направлений, Известия высш. учебных зав., Математика, 1959, № 1 (8), 105—113.
- М. А. Схоутен и Д. Дж. Стройк. Введение в новые методы дифференциальной геометрии, т. 2, ГИИЛ, Москва, 1948.
- 7. Л. М. Эйзенхарт. Риманова геометрия, ГИИЛ, Москва, 1948.
- R. S. Mihra. Subspaces of generalised Riemannian space, Acad. Roy. Belg. Bull. Cl. Sci., 1954, (5) 40, 1058-1071.

APIBENDRINTO EUKLIDINIO SĄRYŠIO ERDVĖS PAVIRŠIŲ TEORIJA

V. BLIZNIKAS

(Reziumė)

Apibendrinto euklidinio sąryšio erdvės kreivių teorija, hiperpaviršių teorija ir hiperpaviršinių kreivių teorija yra išnagrinėta straipsniuose [2], [3] ir [4]. Šiame straipsnyje G. F. Laptevo ir A. M. Vasiljevo metodu yra nagrinėjami minėtos erdvės m-čiai paviršiai ir kreivės ant paviršiaus. Išvestos parametrinės grupės invariantinių formų $(\Theta^{\alpha}, \Theta^{\alpha}_{\beta}, \Theta^{\alpha}_{\beta\gamma})$ transformacijos formulės ir jų pagalba gauti paviršiaus geometrinio objekto $(\Lambda^{i}_{\alpha}, \Lambda^{i}_{\alpha\beta}, \Lambda^{i}_{\alpha\beta\gamma})$ komponenčių transformacijos dėsniai.

Surastos paviršiaus trijų tipų derivacinės lygtys ir jų suderinamumo sąlygos, t.y. lygtys, analogiškos klasikinės paviršių teorijos Gauso – Petersono – Kodaci lygtims. Įvesta paviršiaus daugiamačio asimptotinio vektorinio lauko sąvoka. Surastos dviejų daugiamačių liečiamųjų vektorinių laukų sujungtinumo sąlygos.

Apibendrintos euklidinio sąryšio erdvės paviršinės kreivės turi 9 kreivumo vektorius ir 9 kreivumus (analogai kreivės kreivumo, normalinio kreivumo ir geodezinio kreivumo). Gauti Menjė formulės apibendrinimai ir išnagrinėtos kai kurios paviršiaus asimptotinių ir geodezinių kreivių savybės.

DIE FLÄCHENTHEORIE IM RAUM MIT DEM VERALLGEMEINERTEN EUKLIDISCHEN ZUSAMMENHANG

V. BLIZNIKAS

(Zusammenfassung)

Die allgemeine Theorie der Kurven, der Hyperflächen und der Kurven auf Hyperflächen im Raum mit dem verallgemeinerten Euklidischen Zusammenhang \mathfrak{H}_n wurde in Arbeiten [2], [3] und [4] begründet. In vorliegender Arbeit werden wir die Flächen und Kurven auf der Flächen im Raum \mathfrak{H}_m untersuchen. Auf Grund der Transformationsformeln der invarianten linearen Formen von einer Parametertransformationsgruppe lässt sich die Transformationsbeziehungen (22), (27) und (31) der fundamentalen differentialgeometrischen Objekte $(\Lambda^i_{\alpha}, \Lambda^i_{\alpha\beta}, \Lambda^i_{\alpha\beta\gamma})$ durchführen.

Es wird gezeigt, dass im Raum \mathfrak{H}_n drei verschiedenen Ableitungsformeln von Weingarten und Gauss existieren. Dementsprechend haben wir in Raum \mathfrak{H}_n drei verschiedenen Flächentheorien und drei verschiedenen Typpen der Gleichungen von Ricci, Gauss, Peterson-Kodacci-Mainardi und Voss-Ricci.

Die Kurven auf Flächen \mathfrak{H}_m haben 9 Krümmungsvektoren und 9 Krümmungen. In dieser Arbeit untersucht man geodätische und asymptotische Kurven auf \mathfrak{H}_m in \mathfrak{H}_n . Diese Arbeit enthält auch eine Verallgemeinerung des Satzes von Meusnier.