1964

ДВОЙНЫЕ СИСТЕМЫ РАЗНОСТНЫХ УРАВНЕНИЙ С АСИМПТОТИЧЕСКИ ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

А. Г. НАФТАЛЕВИЧ

1. Эллиптическая функция, имеющая периоды α и β , $\text{Im}(\alpha:\beta) \neq 0$, может быть определена, как мероморфное решение системы разностных уравнений

$$f(z+\alpha)=f(z), \quad f(z+\beta)=f(z).$$

Эта система является простейшим примером двойной системы разностных уравнений. Другие двойные системы разностных уравнений исследовали Эрмит, Аппель [1], Пикар [2], Флоке [3] и Гельфонд [4]. В этой заметке рассмотрим двойную систему

$$F(z+\alpha) = \mathfrak{M}(z) F(z), \quad F(z+\beta) = \mathfrak{N}(z) F(z), \tag{1}$$

где F(z) — одностолбцевая матрица, состоящая из неизвестных функций $f_k(z),\ k=1,\ 2,\ \ldots,\ n$, а $\mathfrak{M}(z)=\|\ a_{kl}(z)\ \|$ и $\mathfrak{N}(z)=\|\ b_{kl}(z)\ \|$, $k,\ l=1,\ 2,\ \ldots,\ n$, — заданные матрицы.

В статье [5] мы изучали мероморфные решения системы (1) в случае, когда $\mathfrak{M}(z) = \mathfrak{M}$ и $\mathfrak{N}(z) = \mathfrak{N}$ — постоянные матрицы. Здесь предположим, что

A. Im $(\alpha:\beta) < 0$.

Б. Матрицы $\mathfrak{M}(z)$ и $\mathfrak{N}(z)$ представимы в квадранте K_c , K_c : $z=c--\alpha u-\beta v$, 0< u, $v<\infty$ (c-комплексное число), абсолютно сходящимися двойными рядами

$$\mathfrak{M}(z) = \sum_{k, l=0}^{\infty} M_{kl} \exp \frac{2\pi i \, kz}{\beta} \exp \left(-\frac{2\pi i \, lz}{\alpha}\right),$$

$$\mathfrak{N}(z) = \sum_{k, l=0}^{\infty} N_{kl} \exp \frac{2\pi i \, kz}{\beta} \exp \left(-\frac{2\pi i \, lz}{\alpha}\right),$$
(2)

где M_{kl} и N_{kl} – постоянные матрицы порядка n.

В. Детерминанты $|M_{00}|$ и $|N_{00}|$ не равны нулю.

Г. Выполнено условие совместности (см. [5]) системы (1):

$$\mathfrak{M}(z+\beta)\,\mathfrak{N}(z) \equiv \mathfrak{N}(z+\alpha)\,\mathfrak{M}(z). \tag{3}$$

Замечание. Если $\Re(z) = E$, где E – единичная матрица, то из (3) следует, что $\Re(z)$ имеет период β . В этом случае решение системы (1) сводится к отысканию периодических решений системы $F(z+\alpha) = \Re(z) F(z)$. Этот вопрос изучен в работе Лёвига [6].

 $(\lambda_k; \mu_k)$.

2. Пусть U- угол, замыкание которого лежит в квадранте K_c . Если $z\to\infty$, $z\in U$, то из (2) легко следует, что $\mathfrak{M}(z)\to M_{00}$ и $\mathfrak{N}(z)\to N_{00}$. Из (3) вытекает, что $M_{00}\,N_{00}=N_{00}\,M_{00}$. Это равенство является условием совместности двойной системы

$$\Phi(z+\alpha) = M_{00} \Phi(z), \quad \Phi(z+\beta) = N_{00} \Phi(z). \tag{4}$$

Последнюю систему назовем предельной для системы (1).

3. Так как матрицы M_{00} и N_{00} перестановочны, то (см. [5]) существует такая невырожденная матрица T, что матрицы $T^{-1}M_{00}T$ и $T^{-1}N_{00}T$ имеют клеточно-диагональный вид:

$$T^{-1}\,M_{00}\,T = M_1 + M_2 + \ldots + M_s$$
, $T^{-1}\,N_{00}\,T = N_1 + N_2 + \ldots + N_s$, где соответствующие клетки M_k и N_k имеют одинаковый порядок. Кроме того, каждая клетка M_k , соответственно, N_k имеет единственное собственное значение λ_k , соответственно, μ_k . Пару $(\lambda_k;\;\mu_k)$ назовем парой соответствующих собственных значений матриц M_{00} и N_{00} . Число p_k , равное порядку клетки M_k , назовем кратностью пары

Условимся говорить, что пара чисел $(\sigma; \tau)$ подобна паре $(\lambda; \mu)$, если $h\geqslant 0$ и $k\geqslant 0$ — целые числа и выполнены равенства $\sigma=\lambda\exp\left(2\pi i\,h\alpha:\beta\right)$ и $\tau=\mu\exp\left(-2\pi i\,k\beta:\alpha\right)$. Сумму кратностей всех пар $(\lambda_i;\,\mu_i)$, подобных паре $(\lambda_k;\,\mu_k)$ (в сумму включаем и кратность нары $(\lambda_k;\,\mu_k)$) обозначим через P_k и назовем полной кратностью пары $(\lambda_k;\,\mu_k)$.

4. Для описания решений систем (1) и (4) введем понятия функции эллиптического вида и обобщенной функции эллиптического вида.

Пусть (см. [1]) $e_{\lambda\mu}(z)$ – эллиптическая функция второго рода со множителями (λ ; μ) и периодами второго рода (α ; β) (т. е. $e_{\lambda\mu}(z)$ – мероморфная функция, удовлетворяющая системе $f(z+\alpha)=\lambda f(z), \ f(z+\beta)=\mu f(z)$) и

$$P\left(z, \zeta(z)\right) = \sum_{\substack{0 \leq s+t \leq k \\ s \geq 0, t \geq 0}} P_{st}(z) z^{s} \zeta^{t}(z),$$

$$Q\left(z, \zeta(z)\right) = \sum_{\substack{0 \leq s+t \leq k \\ s \geq 0, t \geq 0}} P_{st}(z) T_{st}(z) z^{s} \zeta^{t}(z),$$

где $P_{st}(z)$ — постоянные или эллиптические функции, имеющие периоды $(\alpha; \beta)$, $\zeta(z)$ — дзета функция Вейерштрасса, соответствующая паре периодов $(\alpha; \beta)$, и $T_{st}(z)$ — функции, представимые в некотором квадранте K_d рядами вида (2). Функцию $e(z, \lambda, \mu) = e_{\lambda\mu}(z) P(z, \zeta(z))$, соответственно, $E(z, \lambda, \mu) = e_{\lambda\mu}(z) Q(z, \zeta(z))$ назовем функцией эллиптического вида, соответственно, обобщенной функцией эллиптического вида, $(\lambda; \mu)$ — множителями этих функций и число k—степенью этих функций, если сумма $P(z, \zeta(z))$, соответственно, $Q(z, \zeta(z))$ содержит хотя бы одно неравное тождественно нулю слагаемое с индексами st, s+t=k.

Матрицу, все элементы которой—функции вида $e(z,\lambda,\dot{\mu})$, соответственно, $E(z,\lambda;\mu)$, назовем матрицей эллиптического вида, соответственно, обобщенной матрицей эллиптического вида,

числа $(\lambda; \mu)$ — м н о ж и т е л я м и этой матрицы и наибольшую из степеней ее элементов — с т е п е н ь ю этой матрицы.

5. Задача об отыскании всех аналитических (регулярных или мероморфных) в квадранте K_c решений системы (1) сводится к построению фундаментальной системы аналитических решений. При этом фундаментальной системой решений называем n таких решений $F_k(z)$, $k=1,2,\ldots,n$ (заметим, что $F_k(z)$ —столбец, состоящий из n элементов), что детерминант квадрантной матрицы $F^*(z) = \|F_1(z)F_2(z)\ldots F_n(z)\|$ не равен тождественно нулю. Матрицу $F^*(z)$ назовем фундаментальной матрицей. Заметим, что общее аналитическое решение системы (1) выражается в виде $F(z) = F^*(z) E(z)$, где E(z)—одностолбцевая матрица, состоящая из n произвольных эллиптических функций с периодами (α ; β).

Теорема 1. Пусть $(\lambda_k; \mu_k)$, $k=1, 2, \ldots, s-$ все различные пары соответствующих собственных значений матриц M_{00} к N_{00} , p_k- кратность пары $(\lambda_k; \mu_k)$ и P_k- полная кратность этой пары. Существует фундаментальная матрица $\Phi^*(z) = \|\Phi^*(z)\Phi^*_2(z)\ldots\Phi^*_s(z)\|$ системы (4), где подматрица $\Phi^*_k(z)$, $k=1, 2, \ldots$, s, состоит из p_k столбцов. При этом $\Phi^*_k(z)-$ матрица эллиптического вида, она имеет множители $(\lambda_k; \mu_k)$ и ее степень не больше P_k-1 .

Аналогично, существует аналитическая в квадранте K_c фундаментальная матрица $F^*(z) = \|F_1^*(z)F_2^*(z)\dots F_s^*(z)\|$ системы (1), где подматрица $F_k^*(z)$ состоит из p_k столбцов. При этом $F_k^*(z)$ —обобщенная матрица эллитического вида, она имеет множители $(\lambda_k; \mu_k)$ и ее степень не больше P_k-1 .

6. Обратимся к вопросу об асимптотике решений двойной системы (1). Пусть U-угол, замыкание которого лежит в квадранте K_c . Из угла U исключим $\varepsilon-$ окрестности точек вида $k\alpha+l\beta$, где k и l-целые числа, и полученную область обозначим через U_ε .

Теорема 2. Любой фундаментальной матрице $F^*(z)$ системы (1) соответствует такая фундаментальная матрица $\Phi^*(z)$ предельной системы (4), что $F^*(z) \sim \Phi^*(z) \Big(\text{т. e. } F^*(z) [\Phi^*(z)]^{-1} \rightarrow 1 \Big) \quad \text{при } z \rightarrow \infty, \quad z \in U_\varepsilon.$

7. Полузамкнутый параллелограмм $z=z_0+s\alpha+t\beta$, $0\leqslant s<1$, $0\leqslant t<1$ (z_0- комплексное число) обозначим через $\Pi\left(z_0\right)$ и назовем фундаментальным параллелограммом. В исследованиях Эрмита по эллиптическим функциям второго рода содержится такой результат:

Если пара $(\lambda; \mu)$ не является особенной, т.е. $\alpha \ln \mu \neq \beta \ln \lambda$, то существует одна и только одна эллиптическая функция второго рода $e_{\lambda\mu}(z)$ (со множителями $(\lambda; \mu)$ и периодами $(\alpha; \beta)$, имеющая в фундаментальном параллелограмме $\Pi(z_0)$ наперед (произвольно) заданные полюсы и главные части.

В следующей теореме будет показано, что аналогичный результат имеет место и для решений системы (1). Предварительно условимся о следующем:

а) пусть $A(z) = \|\alpha_{kl}(z)\|$, $k=1, 2, \ldots, m$; $l=1, 2, \ldots, n$, — некоторая матрица, все элементы которой — мероморфные в области G функции. Точ-

ку γ , $\gamma \in G$, назовем полюсом матрицы A(z), если γ -полюс хотя бы одного из элементов $\alpha_{kl}(z)$. Матрицу $H(z,\gamma)$, составленную из главных частей функций $\alpha_{kl}(z)$ в точке γ , назовем главной частью матриць A(z) в точке γ ;

б) пусть, по-прежнему, U- угол, замыкание которого лежит в квадранте K_c и A=A (U) — достаточно большое число. Условимся, что парал лелограмм Π (z_0) является достаточно удаленным, если $z_0 \in U$ в $|z_0| > A$.

Теорема 3. Если матрицы M_{00} и N_{00} не имеют особенных пар соответст вующих собственных значений $\left(m.e.\ \alpha \ln \mu \neq \beta \ln \lambda \right)$ для любой пары соответст вующих собственных значений $(\lambda;\ \mu)$, то существует одно и только одно мероморфное в квадранте K_c решение системы (1), имеющее в достаточно удаленном фундаментальном параллелограмме $\Pi(z_0)$ наперед (произвольно, заданные полюсы и главные части.

Следствие. Если матрицы M_{00} и N_{00} не имеют особенных пар соот ветствующих собственных значений, то система (1) помимо тривиального решения $F(z) \equiv 0$ не имеет других решений, регулярных в квадранте K_c .

Замечание. Условие достаточной удаленности параллелограмма $\Pi\left(z_{0}\right)$ существенно для единственности решения системы (1) с заданными в $\Pi\left(z_{0}\right)$ полюсами и главными частями. Для существования такого решения этс условие является излишним.

8. Рассмотрим еще неоднородную двойную систему

$$F(z+\alpha) = \mathfrak{M}(z) F(z) + G(z), \qquad F(z+\beta) = \mathfrak{N}(z) F(z) + H(z), \tag{5}$$

где $\mathfrak{M}(z)$ и $\mathfrak{N}(z)$ удовлетворяют условиям, изложенным в пункте 1, а G(z) и H(z) — аналитические в квадранте K_c одностолбцевые матрицы, удовлетворяющие дополнительному условию совместности (см. [5])

$$G(z+\beta)-\Re(z+\alpha)G(z)\equiv H(z+\alpha)-\Re(z+\beta)H(z).$$

Теорема 4. Система (5) имеет аналитическое в квадранте K_c решение. Заметим, что теорема 3 остается справедливой и для системы (5). В частности, система (5) имеет единственное регулярное в квадранте K_c решение, если матрицы G(z) и H(z) регулярны в этом квадранте и матрицы M_{00} и N_{00} не имеют особенных пар соответствующих собственных значений.

Вильнюсский государственный университет им. В. Капсукаса

Поступило в редакцию 15.III.1964

ЛИТЕРАТУРА

- P. Appell, E. Lacour. Principes de la théorie des fonctions elliptiques et applications, Paris, 1922.
- 2. E. Picard. Leçons sur quelques équations fonctionnelles, Paris, 1928.
- 3. G. Floquet. Ann. Ec. Norm. (3), 1 (1884).
- 4. А. О. Гельфонд. Исчисление конечных разностей, М. Л., 1952.
- 5. A. Г. Нафталевич. Матем. сборник, **54** (96):1, (1961).
- H. Löwig. Acta math., 57 (1931).

DVILYPĖS SKIRTUMINIŲ LYGČIŲ SISTEMOS SU ASIMPTOTIŠKAI PASTOVIAIS KOEFICIENTAIS

A. NAFTALEVIČIUS

(Reziumė)

Darbe nagrinėjami sistemų (1) ir (5) analiziniai sprendiniai.

DOPPELSYSTEME VON DIFFERENZENGLEICHUNGEN MIT ASYMPTOTISCH KONSTANTEN KOEFFIZIENTEN

A. NAFTALEWITSCH

(Zusammenfassung)

Es werden die analytischen Lösungen der Gleichungsysteme (1) und (5) untersucht.