1966

К ВОПРОСУ ДИХОТОМИЧЕСКОЙ И ТРИХОТОМИЧЕСКОЙ ЗАДАЧ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ ДЛЯ ПРОЦЕССА С КОНЕЧНЫМ ЧИСЛОМ ШАГОВ

В. Б. БИСТРИЦКАС

Для дихотомического процесса динамического программирования с конечным числом шагов

$$f_{1}(x, y) = \max [p_{1} r_{1} x, p_{2} r_{2} y],$$

$$f_{N+1}(x, y) = \max \begin{cases} A : p_{1} [r_{1} x + f_{N} ((1 - r_{1}) x, y)], \\ B : p_{2} [r_{2} y + f_{N} (x, (1 - r_{2}) y)], \end{cases}$$

$$(N=1, 2, ...; O \le x, y < \infty; O < r_{1}, r_{2}, p_{1}, p_{2} < 1)$$

находим области решения, существование и монотонная сходимость которых была доказана Р. Беллманом [1]. В п. 2 такая же задача решается для вспомогательных дихотомических процессов (10) и (22), а в п. 3 для некоторого класса трихотомических задач (24).

1. Найдем явный вид решения уравнений (1).

Обозначения: $f_{A^mB^l}(N, x, y) - N$ шаговый процесс, когда в точке (x, y) сначала m раз подряд используется A, а затем, начиная с m+1, l раз используется B, и только потом следует оптимальное продолжение, где $m+l \leqslant N$.

 K_N — коэффициент прямой

$$f_{AN}(N, x, y) = f_{BAN-1}(N, x, y).$$

 \overline{K}_N — коэффициент прямой

$$f_{BN}(N, x, y) = f_{AB^{N-1}}(N, x, y).$$

К – коэффициент прямой

$$f_{AB}(N, x, y) = f_{BA}(N, x, y),$$

где N=2, 3, ...

 $l_N x = y$ — граничная прямая между A и B областями решения. Существование этой прямой доказано Р. Беллманом.

Лемма 1. Имеют место следующие соотношения:

a)
$$K_N - K = \frac{p_1}{1 - p_2} [(1 - r_1) K_{N-1} - K_N],$$

6)
$$(1-r_2)\overline{K}_N-\overline{K}_{N-1}=c_1(K-\overline{K}_N)$$
, $\varepsilon\partial e\ c_1>O$.

Доказательство. Докажем соотношение а). Для этого найдем коэффициент K_N . Из определения следует, что

$$f_{AN}(N, x, y) = \frac{p_1 r_1 [1 - p_1^N (1 - r_1)^N]}{1 - p_1 (1 - r_1)} x,$$

$$f_{BAN-1}(N, x, y) = p_2 r_2 y + \frac{p_2 p_1 r_1 [1 - p_1^{N-1} (1 - r_1)^{N-1}]}{1 - p_1 (1 - r_1)} x.$$

Приравнивая $f_{A^N}(N, x, y)$ и $f_{BA^{N-1}}(N, x, y)$, получаем

$$K_N = \frac{p_1 r_1 \left\{ 1 - p_2 + [p_2 - p_1 (1 - r_1)] p_1^{N-1} (1 - r_1)^{N-1} \right\}}{p_2 r_3 [1 - p_1 (1 - r_1)]} . \tag{2}$$

Обозначим

$$c_2 = \frac{p_1 r_1}{p_2 r_2 [1 - p_1 (1 - r_1)]}.$$

Так как

$$K = \frac{p_1 r_1 (1 - p_2)}{p_2 r_2 (1 - p_1)} \tag{3}$$

см. [1] стр. 95), то из (2) следует, что

$$K_{N}-K = \frac{c_{1}}{1-p_{1}} \left\{ (1-p_{1})(1-p_{2}) + p_{1}^{N-1}(1-r_{1})^{N-1} [p_{2}-p_{1}(1-r_{1})] \times (1-p_{1}) - (1-p_{1})(1-p_{2}) - p_{1} r_{1}(1-p_{2}) \right\}.$$

$$K_{N}-K = \frac{c_{2} p_{1}}{1-p_{1}} \left\{ p_{1}^{N-2}(1-r_{1})^{N-1} [p_{2}-p_{1}(1-r_{1})] (1-p_{1}) - r_{1}(1-p_{2}) \right\}. \tag{4}$$

Элементарные преобразования приводят к соотношениям

$$\begin{aligned} 1-r_1) & K_{N-1}-K_N = c_3 \left\{ (1-r_1) \left[1-p_2+p_1^{N-2} \left(1-r_1 \right)^{N-2} \left[p_2-p_1 \left(1-r_1 \right) \right] - 1+p_2-p_1^{N-1} \left(1-r_1 \right)^{N-1} \left[p_2-p_1 \left(1-r_1 \right) \right] \right\} = c_2 \left\{ p_1^{N-2} \left(1-r_1 \right)^{N-1} \left[p_2-p_1 \left(1-r_1 \right) \right] \left(1-p_2 \right) - -r_1 \left(1-p_2 \right) \right\}. \end{aligned}$$

Сравнивая (3) и последнее соотношение, получаем

$$K_N - K = \frac{p_1}{1 - p_1} [(1 - r_1) K_{N-1} - K_N].$$

Вторая часть леммы доказывается аналогично.

Teopema 1. Если $p_2 > p_1$, то

$$f_N(x, y) = \begin{cases} f_{A^N}(N, x, y), & \kappa o \geq \partial a \ y \leq K_N x, \\ f_B(N, x, y), & \kappa o \geq \partial a \ y \geq K_N x, \end{cases}$$
 (5)

для

$$N < N_o = \min_{\{N\}} \{N: K_N - K < O\} > 1,$$

и

$$f_N(x, y) = \begin{cases} f_A(N, x, y), & \text{когда } y \leq Kx, \\ f_B(N, x, y), & \text{когда } y \geq Kx, \end{cases}$$
 (6)

для $N \ge N_o$.

Если $p_1=p_2$, то функция $f_N(x, y)$ удовлетворяет соотношению (6) для $N=1,\ 2\ldots$

Eсли $p_2 < p_1$, то

$$f_N(x, y) = \begin{cases} f_A(N, x, y), & \text{когда } y \leq \overline{K}_N x, \\ f_{RN}(N, x, y), & \text{когда } y \geq \overline{K}_N x, \end{cases}$$

для

$$N < \overline{N}_o = \min_{\{N\}} \{N : \overline{K}_N - K > O\} > 1,$$

и функция $f_N(x, y)$ удовлетворяет соотношению (6) для $N > N_o$.

Доказательство. Пусть $p_2 > p_1$. Методом математической индукции покажем, что прямая $y = K_N x$ является граничной прямой для функции $f_N(x, y)$, если $K_N > K$.

Если N=1, то

$$f_1(x, y) = \max \left\{ \begin{array}{l} p_1 r_1 x \\ p_2 r_2 y \end{array} \right. = \left\{ \begin{array}{l} p_1 r_1 x, \text{ когда } y \leqslant \frac{p_1 r_1}{p_2 r_2} x, \\ p_2 r_2 y, \text{ когда } y \geqslant \frac{p_1 r_1}{p_2 r_2} x, \end{array} \right.$$

и, следовательно,

$$l_1 = \frac{p_1 r_1}{p_2 r_2}$$
.

Из соотношений (2) и (4) следует, что

$$K_1 = l_1,$$

$$K - K_1 = -\frac{p_1 r_1 (p_2 - p_1)}{p_2 r_2 (1 - p_1)} < 0.$$

Этим мы доказали справедливость утверждения для N=1. Предположим, что

$$l_{N-1} = K_{N-1}$$

когда $K_{N-1} > K$, и получим равенство

$$l_N = K_N$$

когда $K_N > K$. В силу неравенства $l_{N-1} > K$ и монотонной сходимости $l_N k K$ (см. [1] стр. 97),

$$l_{N-1} \geqslant l_N \geqslant K. \tag{7}$$

Пусть $l_N > K$. Тогда над прямой y = Kx либо B используется первым, либо оптимальным поведением является A^N (см. [1] стр. 95).

Таким образом, на прямой $y = l_N x$

$$f_A(N, x, y) = f_{AN}(N, x, y).$$
 (8)

Если точка (x, y) лежит на прямой $y = l_N x$, то точка $(x, (1-r_2) y)$ лежит на прямой $y = (1-r_2) l_N x$ и, кроме того, ниже прямой $y = l_{N-1} x$ в силу (7). Отсюда следует, что на прямой $y = l_N x$

$$f_B(N, x, y) = p_2 r_2 y + p_2 f_{N-1} (x, (1-r_2) y) = p_3 r_2 y + p_2 f_{A^{N-1}} (N-1, x, (1-r_2) y) = f_{BA^{N-1}}(N, x, y).$$

По определению l_N на прямой $y = l_N x$

$$f_B(N, x, y) = f_A(N, x, y)$$
.

Подставляя сюда вместо $f_A(N, x, y)$ и $f_B(N, x, y)$ последнее выражение и (8), получаем

 $f_{BA^{N-1}}(N, x, y) = f_{A^N}(N, x, y).$

Это означает, что

$$l_N = K_N, \tag{9}$$

когда $K_N > K$.

Допустим, что

$$l_N = K$$
 и $K_N > K$,

и покажем, что такое допущение ведет к противоречию. В силу утверждения а) леммы 1 и соотношений $K_N > K$, $l_{N-1} = K_{N-1}$ справедливо неравенство

$$l_{N-1} > \frac{K}{1-r_1},$$

и, следовательно, на прямой y = Kx

$$f_A(N, x, y) = p_1 r_1 x + p_1 f_{N-1} ((1-r_1)x, y) = f_{AN}(N, x, y).$$

Таким же образом, как в случае $l_N > K$, доказываем соотношение

$$f_B(N, x, y) = f_{BAN-1}(N, x, y).$$

Приравнивая $f_A(N, x, y)$ и $f_B(N, x, y)$, получаем

$$f_{AN}(N, x, y) = f_{RAN-1}(N, x, y).$$

Это означает, что

$$K_N = K$$
.

Получили противоречие допущению. Таким образом, $l_N = K_N$, когда $K_N > K$, и доказано соотношение (5).

Соотношение (6) для $N \geqslant N_o$ следует из теоремы Беллмана (см. [1] стр. 97).

Если $p_2 = p_1$, то

$$l_1 = K_1 = K,$$

и в силу монотонной сходимости областей решения

$$l_N = K$$

для N=1, 2, ...

Случай $p_2 < p_1$ рассматривается аналогично случаю $p^2 > p_1$.

Следствие. Если $p_2 > p_1$, то для всех x и y, удовлетворяющих неравенствам $(1-r_2)^{N-l-1}K_{l+1}$ $x \leqslant y$ и $y \leqslant (1-r_2)^{N-l}K_l x$, где l=1, 2 ... и $l < N < N_{o}$, верно соотношение

$$f_N(x, y) = f_{B^{N-l}A^l}(N, x, y),$$

 $a \ \partial$ ля $y \geqslant (1 - r_2)^{N-1} K_1 x - coomношение$

$$f_N(x, y) = f_{RN}(N, x, y).$$

Eсли $p_1 < p_2$, то

$$f_N\left(x,\ y\right) = \begin{cases} f_{A^{N-l}B^l}(N,\ x,\ y), \ \text{koeda} \ (1-r_1)^{N-l}\overline{K}_l \ x \leqslant y \leqslant (1-r_1)^{N-l-1}\overline{K}_{l+1}^{*} \ x, \\ f_{A^N}(N,\ x,\ y), \ \text{koeda} \ y \leqslant (1-r_1)^{N-1}\overline{K}_1^{*} \ x, \end{cases}$$

 $e\partial e \ l < N < \overline{N}_o$

Доказательство. Пусть l=N-1. Тогда в области

$$K_N x \leqslant y \leqslant (1-r_2) K_{N-1} x,$$

$$f_N(x, y) = f_B(N, x, y) = p_2 \left[r_2 y + f_{N-1} \left(x, (1 - r_2) y \right) \right].$$

Так как точка $\left(x,\; (1-r_2)\,y\right)$ находится в области $\frac{K_N}{1-r_2}x\leqslant y\leqslant K_{N-1}\,x$, то согласно теореме 1

$$f_{N-1}(x, (1-r_2)y) = f_{A^{N-1}}(N-1, x, (1-r_2)y).$$

Следовательно,

$$f_N(x, y) = f_{RAN-1}(N, x, y).$$

Продолжая этот процесс для $l=N-2,\ N-3,\ \dots$, получим доказательство следствия для случая $p_2>p_1$. Случай $p_2< p_1$ рассматривается аналогично.

2. Для решения трихотомической задачи нам понадобится исследовать процесс $\phi_N(x, y)$, имеющий вид

$$\varphi_{N}(x, y) = \max \begin{cases} A: p_{1} \left[r_{1} x + \varphi_{N-1} \left((1 - r_{1}) x, y \right), \\ C: p_{3} \left[r_{3} (x + y) + \varphi_{N-1} \left((1 - r_{3}) x, (1 - r_{3}) y \right), \end{cases}$$
(10)

где N 1, 2, . . . , $\varphi_0(x, y) = O$; $O < r_1, r_3, p_1, p_3 < 1$. Обозначим через M_N коэффициент прямой

$$\varphi_{C^N}(N, x, y) = \varphi_{AC^{N-1}}(N, x, y),$$

 \overline{M}_N — коэффициент прямой .

$$f_{AN}(N, x, y) = \varphi_{CA^{N-1}}(N, x, y),$$

М - коэффициент прямой

$$\varphi_{AC}(N, x, y) = \varphi_{CA}(N, x, y), N \ge 2.$$

Оптимальное поведение процесса $\phi_N(x, y)$ определяется следующей теоремой. Теорема 2. *Если* $p_1 > p_3$, то

$$\varphi_N(x, y) = \begin{cases} \varphi_{C^N}(N, x, y), & \kappa o \partial a \ y \geqslant M_N x, \\ \varphi_A(N, x, y), & \kappa o \partial a \ y \leqslant M_N x, \end{cases}$$
(11)

еде $N=1,\ 2,\ \ldots,\ u$ M_N сходится κ M при $N{\to}\infty,$ строго монотонно возрастая.

Eсли $p_1 = p_3$, то

$$\varphi_N(x, y) = \begin{cases}
\varphi_C(N, x, y), & \kappa o \partial a \ y \geqslant Mx, \\
\varphi_A(N, x, y), & \kappa o \partial a \ y \leqslant Mx,
\end{cases}$$
(12)

 $e\partial e N=1, 2, \ldots$

Eсли $p_1 < p_3$, то

$$\varphi_N(x, y) = \begin{cases}
\varphi_C(N, x, y), & \kappa o \partial a \ y \geqslant \overline{M}_N x, \\
\varphi_{A^N}(N, x, y), & \kappa o \partial a \ y \leqslant \overline{M}_N x,
\end{cases}$$
(13)

для

$$N \leqslant N_o = \max_{\{N\}} \{N : \overline{M}_N - M \geqslant O\} > 1.$$

Процесс $\varphi_N(x, y)$ удовлетворяет соотношению (12) для $N > N_o$. Доказательство. Пусть $p_1 > p_3$. Тогда из определения

$$\varphi_{ACN-1}(N, x, y)$$
 и $\varphi_{CN}(N, x, y)$

получаем

$$\varphi_{AC^{N-1}}(N, x, y) = p_1 r_1 x + \frac{p_1 p_3 r_3 [1 - p_3^{N-1} (1 - r_3)^{N-1}] [(1 - r_1) x + y]}{1 - p_3 (1 - r_3)},$$

$$\varphi_{C^N}(N, x, y) = \frac{p_3 r_3 [1 - p_3^N (1 - r_3)^N] (x + y)}{1 - p_3 (1 - r_3)}.$$

Приравнивая $\varphi_{C^N}(N,\ x,\ y)$ и $\varphi_{AC^{N-1}}(N,\ x,\ y)$, найдем коэффициент M_N

$$M_{N} = \frac{p_{1} r_{1} (1 - p_{2}) - p_{3} r_{3} (1 - p_{1}) - p_{3}^{N} r_{3} (1 - r_{3})^{N-1} [p_{1} (1 - r_{1}) - p_{3} (1 - r_{2})]}{p_{3} r_{3} (1 - p_{1}) + p_{3}^{N} r_{3} (1 - r_{3})^{N-1} [p_{1} - p_{3} (1 - r_{3})]}.$$
 (14)

Покажем что M_N монотонно возрастающая функция от N. Обозначим

$$a = p_1 r_1 (1 - p_3) > O,$$

$$b = p_3 r_3 (1 - p_1) > O,$$

$$c = p_1 - p_2 (1 - r_2) > O$$
(15)

и рассмотрим разность

$$M_{N} - M_{N-1} = \frac{a - b - p_{3}^{N} r_{3} (1 - r_{3})^{N-1} (c - p_{1} r_{1})}{b + p_{3}^{N} r_{3} (1 - r_{3})^{N-1} c} - \frac{a - b - p_{3}^{N-1} r_{3} (1 - r_{3})^{N-2} (c - p_{1} r_{1})}{b + p_{3}^{N-1} r_{3} (1 - r_{2})^{N-3} c} =$$

$$= R_{1} [b (c - p_{1} r_{1}) + c (a - b)] = R_{1} (ca - p_{1} r_{1} b).$$

где

$$R_1 = \frac{p_3^{N-1} r_3 (1-r_3)^{N-3} (1-p_3+p_3 r_3)}{[b+p_3^N r_3 (1-r_3)^{N-1} c][b+p_3^{N-1} r_3 (1-r_3)^{N-2} c]} > O.$$

Подставляя вместо a, b, c выражения (15), получаем

$$M_N - M_{N-1} = R_1 p_1 r_1 (1 - p_3 + p_3 r_3) (p_1 - p_3) > 0.$$

Отсюда

$$M_N > M_{N-1}$$
. (16)

Теперь найдем коэффициент M. Так как для $N \geqslant 2$

$$\varphi_{AC}(N, x, y) = p_1 r_1 x + p_1 p_3 r_3 [(1 - r_1) x + y] + p_1 p_3 \varphi_{N-2} ((1 - r_1) (1 - r_3) x, (1 - r_3) y),$$

$$\varphi_{CA}(N, x, y) = p_3 r_3 (x + y) + p_1 p_3 (1 - r_3) r_1 x + p_1 p_3 \varphi_{N-2} ((1 - r_1) (1 - r_3) x, (1 - r_3) y),$$

то, приравнивая $\phi_{AC}(N, x, y)$ и $\phi_{CA}(N, x, y)$, получаем

$$p_1 r_1 x + p_1 p_3 r_3 [(1 - r_1) x + y] = p_3 r_3 (x + y) + p_1 r_1 p_3 (1 - r_3) x$$

Следовательно,

39.05

$$M = \frac{p_1 r_1 (1 - p_0) - p_0 r_0 (1 - p_1)}{p_0 r_0 (1 - p_1)}.$$
 (17)

Таким образом, из соотношения (14) следует, что

$$\lim_{N \to \infty} M_N = M. \tag{18}$$

Докажем соотношение (11). Применим метод математической индукции, Пусть N=1, тогда

$$\phi_1(x, y) = \max \left[p_1 r_1 x, \ p_3 r_3(x+y) \right] = \begin{cases} A : p_1 r_1 x, \text{ когда } y \leqslant \frac{p_1 r_1 - p_3 r_3}{p_3 r_3} x, \\ C : p_3 r_3(x+y), \text{ когда } y \geqslant \frac{p_1 r_1 - p_3 r_3}{p_3 r_3} x. \end{cases}$$

В силу (14) это и есть соотношение (11) для N=1. Предположим, что соотношение (11) выполняется для N=k-1. Покажем, что это соотношение верно и для N=k.

Докажем, что в области y > Mx оптимальное поведение есть C^k . Пусть в какой-нибудь точке этой области оптимальным первым выбором для процесса $\varphi_k(x, y)$ является выбор A. Тогда по предположению индукции

$$\varphi_{k-1}\left((1-r_1)x, y\right) = \varphi_{C^{k-1}}\left(k-1, (1-r_1)x, y\right),$$

так как $M_{k-1} < M$ (соотношения (16) и (18)). Следовательно,

$$\varphi_k(x, y) = \varphi_{AC^{k-1}}(k, x, y).$$

Но стандартное рассуждение показывает, что

$$\varphi_{AC}(k, x, y) < \varphi_{CA}(k, x, y)$$

для всех y>Mx, и, следовательно, AC^{k-1} не может быть оптимальным поведением. Поэтому в области y>Mx

$$\varphi_k(x, y) = \varphi_{ck}(k, x, y) > \varphi_A(k, x, y).$$
 (19)

Аналогичные рассуждения приводят к соотношениям

$$\varphi_k(x, y) = \varphi_A(k, x, y) > \varphi_C(k, x, y)$$
 (20)

для $y \leqslant M_{k-1} x$. Из однородности и непрерывности функции $\varphi_N(x, y)$ следует существование граничных прямых таких, что

$$\varphi_C(k, x, y) = \varphi_A(k, x, y).$$

Соотношения (16), (18), (19) и (20) показывают, что все граничные прямые процесса $\varphi_k(x,y)$ находятся в области $M_{k-1}\,x < y \leqslant Mx$. Пусть $y = M_k'\,x$ одна из граничных прямых. Тогда по предположению индукции на прямой $y = M_k'\,x$ имеем

$$\varphi_C(k, x, y) = \varphi_{C^k}(k, x, y)$$

и в силу неравенства $M'_k > M_{k-1}$

$$\varphi_A(k, x, y) = \varphi_{ACk-1}(k, x, y).$$

Подставляя вместо $\varphi_C(k, x, y)$ и $\varphi_A(k, x, y)$ полученные выражения, получаем равенство

$$\varphi_{C^k}(k, x, y) = \varphi_{AC^{k-1}}(k, x, y).$$

Следовательно,

$$M_k = M'_k$$
.

Это означает, что функция $\varphi_k(x, y)$ имеет единственную граничную прямую $y = M_k x$. Так как $M_k > M_{k-1}$, то

$$\varphi_C(k, x, y) = \varphi_{Ck}(k, x, y).$$

Отсюда и из соотношений (19) и (20) следует соотношение (11). Этим процесс математической индукции закончен.

Если $p_1 = p_3$, то соотношение (17) имеет вид

$$M=\frac{r_1-r_3}{r_3}$$

И

$$\phi_1\left(x,\ y\right) = \max\left[p_3\,r_1\,x,\ p_3\,r_3\left(x+y\right)\right] = \left\{ \begin{array}{l} A:p_3\,r_1\,x,\ \text{когда}\ y \leqslant \frac{r_1-r_3}{r_3}\,, \\ C:p_3\,r_3\left(x+y\right),\ \text{когда}\ y \geqslant \frac{r_1-r_3}{r_3}\,. \end{array} \right.$$

Это соотношение (12) для N=1. Пусть соотношение (12) верно для N-1. Докажем его справедливость для N. Очевидно, что в области y>Mx

$$\varphi_N(x, y) = \varphi_C(N, x, y),$$

так как по предположению

 $\varphi_{\mathcal{A}}(N, x, y) = p_1 r_1 x + p_1 \varphi_{N-1} \Big((1 - r_1) x, y \Big) = \varphi_{\mathcal{A}C}(N, x, y) < \varphi_{\mathcal{C}A}(N, x, y).$ Следовательно,

$$\varphi_N(x, y) = \varphi_C(N, x, y) = p_3 r_3(x+y) + p_3(1-r_3) \varphi_{N-1}(x, y) = \varphi_{CN}(N, x, y).$$

Далее исследуем область y < Mx. Рассуждения, аналогичные проведенным, приводят к соотношению

$$\varphi_N(x, y) = \varphi_A(N, x, y),$$

т. е. к соотношению (12), так как на прямой y = Mx оба выбора являются оптимальными.

Доказательство теоремы, когда $p_3 > p_1$, проводится аналогично случаю $p_2 > p_1$.

Следствие. Если $p_1 > p_3$, то для всех x и y удовлетворяющих неравенствам

$$(1-r_1)^l M_{N-l} x \leq y \leq (1-r_1)^{l-1} M_{N-l+1} x$$

где $l=1, 2, \ldots N-1$, верно соотношение

$$\varphi_N(x, y) = \varphi_{A^lC^{N-l}}(N, x, y)$$
 (21)

и

$$\varphi_N(x, y) = \varphi_{A^N}(N, x, y), \text{ когда } y \leq (1 - r_1)^{N-1} M_1 x.$$

Eсли $p_1 = p_3$, то

$$\phi_N(x,\ y) = \left\{ \begin{array}{l} \phi_{C^N}(N,\ x,\ y),\ \kappa o \varepsilon \partial a\ y \geqslant Mx, \\ \phi_{A^IC^{N-I}}(N,\ x,\ y),\ \kappa o \varepsilon \partial a\ (1-r_1)^I Mx \leqslant y \leqslant (1-r_1)^{I-1} Mx, \\ \phi_{A^N}(N,\ x,\ y),\ \kappa o \varepsilon \partial a\ y \leqslant (1-r_1)^{N-1} Mx, \end{array} \right.$$

 $e\partial e \ l, \ N=1, \ 2 \ \ldots \ u \ l < N.$

Eсли $p_3 > p_1$, то

$$\phi_{N}(x, y) = \begin{cases} \phi_{CN}(N, x, y), & \kappa o \partial a \ y \geqslant \overline{M}_{1}x, \\ \phi_{CN-l_{A}l}(N, x, y), & \kappa o \partial a \ \overline{M}_{l+1}x \leqslant y \leqslant \overline{M}_{l}x, \\ \phi_{A}^{N}(N, x, y), & \kappa o \partial a \ y \leqslant \overline{M}_{N}x, \end{cases}$$

где $l < N \leq N_0$.

Доказательство. Пусть $p_1 > p_3$ и l = 1. В силу теоремы в области $(1 - r_1) \, M_{N-1} \, x \leqslant y \leqslant M_N \, x$

$$\varphi_N(x, y) = p_1 r_1 x + p_1 \varphi_{N-1} ((1-r_1) x, y).$$

Так как точка $((1-r_1)x, y)$ находится в области $M_{N-1}x \leqslant y \leqslant \frac{M_Nx}{1-r_1}$, то $\varphi_N(x, y) = \varphi_{AC^{N-1}}(N, x, y)$,

т. е. верно соотношение (21), когда l=1.

Пусть l=2. Исследуем область $(1-r_1)^2\,M_{N-2}\,x\leqslant y\leqslant (1-r_1)\,M_{N-1}\,x$. Так как $M_{N-1}< M_N$, то

$$\varphi_N(x, y) = p_1 r_1 x + p_1 \varphi_{N-1} ((1-r_1) x, y).$$

Точка $((1-r_1)x, y)$ принадлежит области $(1-r_1)M_{N-2}x\leqslant y, y\leqslant M_{N-1}x$. В силу полученного соотношения для l=1,

$$\varphi_{N-1}((1-r_1)x, y) = \varphi_{ACN-2}(N-1, (1-r_1)x, y).$$

Следовательно.

$$\varphi_N(x, y) = \varphi_{A^2 C^{N-2}}(N, x, y).$$

Нетрудно заметить, что мы можем продолжать этот процесс до l=N-1. Далее исследуем поведение процесса $\phi_N(x, y)$ в области

$$y \leq (1-r_1)^{N-1} M_1 x$$
.

Очевидно, что

$$\varphi_N(x, y) = p_1 r_1 x + p_1 \varphi_{N-1} ((1-r_1) x, y)$$

И

$$\varphi_{N-1}\left((1-r_1)x, y\right) = \varphi_A(N-1, (1-r_1)x, y).$$

Продолжая этот процесс, получаем, что в области $y \leq (1-r_1)^{N-1} M_1 x$ $\varphi_N(x, y) = \varphi_{AN}(N, x, y).$

Доказательство следствия, когда $p_1 > p_3$, закончено.

Если $p_1 = p_3$, то в области y > Mx

$$\varphi_N(x, y) = p_3 r_3(x+y) + p_3(1-r_3) \varphi_{N-1}(x, y) = \varphi_{CN}(N, x, y).$$

Остальные соотношения, фигурирующие в доказательстве, которые мы опускаем, аналогичны случаю $p_1 > p_3$.

Рассмотрим другой вспомогательный процесс $\psi_N(x, y)$, удовлетворяющий рекуррентному соотношению

$$\psi_{N}(x, y) = \max \left\{ B: p_{2} \left[r_{2} y + \psi_{N-1} \left(x, (1-r_{2}) y \right) \right], \\ C: p_{3} \left[r_{3} (x+y) + \psi_{N-1} \left((1-r_{3}) x, (1-r_{3}) y \right) \right], \right.$$
 (22)

где $\psi_o(x, y) = 0$.

Обозначим через

 L_N — коэффициент прямой

$$\psi_{C^N}(N,\ x,\ y) = \psi_{CB^{N-1}}(N,\ x,\ y),$$
ит прямой $\psi_{B^N}(N,\ x,\ y) = \varphi_{CB^{N-1}}(N,\ x,\ y),$

 $\overline{L}_{\scriptscriptstyle N}$ — коэффициент прямой

$$\psi_{RN}(N, x, y) = \varphi_{CRN-1}(N, x, y),$$

L — коэффициент прямой

$$\psi_{CB}(N, x, y) = \psi_{BC}(N, x, y).$$

Если в теореме 2 выбор A заменить на B и очевидным образом изменить граничные линии, то теорема 2 примет следующий вид:

Теорема 3. Если $p_2 > p_3$, то

$$\psi_N(x, y) = \begin{cases} \psi_B(N, x, y), & \kappa o \partial a \ y \geqslant L_N x, \\ \psi_{CN}(N, x, y), & \kappa o \partial a \ y \leqslant L_N x, \end{cases}$$

для $N=1, 2, \ldots u$ L_N сходится κ L при $N \rightarrow \infty$ строго монотонно убывая. Eсли $p_2 = p_3$, то

$$\psi_{N}(x, y) = \begin{cases} \psi_{B}(N, x, y), & \kappa o \partial a \ y \geqslant Lx, \\ \psi_{C}(N, x, y), & \kappa o \partial a \ y \leqslant Lx. \end{cases}$$
 (23)

 $\partial e N = 1, 2, \ldots$

Eсли $p_2 < p_3$, то

$$\psi_{N}(x, y) = \begin{cases} \psi_{B^{N}}(N, x, y), & \kappa o \partial a \ y \geqslant \overline{L}_{N} x, \\ \psi_{C}(N, x, y), & \kappa o \partial a \ y \leqslant \overline{L}_{N} x, \end{cases}$$

для $N\leqslant M_o=\max_{c}\;\{\;N:\overline{L}_N-L\leqslant O\;\}\;\;u\;\;\psi_N(x,\;y)\;\;$ удовлетворяет соотношению (23) $\partial_{\Lambda} R N > M_c$

3. В этом пункте будем рассматривать трихотомическую задачу процесса $\eta_N(x, y)$ с конечным числом шагов, имеющего вид

$$\eta_{N}(x, y) = \max \begin{cases}
A: p_{1} \left[r_{1} x + \eta_{N-1} \left((1 - r_{1}) x, y \right) \right], \\
B: p_{2} \left[r_{2} y + \eta_{N-1} \left(x, (1 - r_{2}) y \right) \right], \\
C: p_{3} \left[r_{3} (x + y) + \eta_{N-1} \left((1 - r_{3}) x, (1 - r_{3}) y \right) \right],
\end{cases} (24)$$

где $N=1, 2, \ldots; \eta_0(x, y)=0, 0 < r_1, r_2, r_3, p_1, p_2, p_3 < 1; x, y \ge 0.$

Лемма 2. Если $O \le M$, $L < \infty$, то либо L > K > L, либо M > K > L, либо L = K = L.

Доказательство леммы опускаем. Оно основано на элементарных преобразованиях выражений L, K и M.

Теорема 4. Если p_1 , $p_2 \geqslant p_3$ и $L \geqslant M$, то

для $N \le \max \{ N : (1-r_1)L_{N-1} \ge M_N \ u \ (1-r_2)L_N \ge M_{N-1} \}.$

Доказательство проведем методом математической индукции. N=1. Тогда

$$\eta_1(x, y) = \max \begin{cases} A: p_1 r_1 x, \\ B: p_2 r_2 y, \\ C: p_3 r_3 (x+y) \end{cases}$$

И

$$\eta_1\left(x,\ y\right) = \left\{ \begin{array}{l} p_1\,r_1\,x, \ \ \text{когда} \ \ y \leqslant M_1\,x, \\ p_3\,r_3\,(x+y), \ \ \kappa \text{огда} \ \ M_1\,x \leqslant y \leqslant L_1\,x, \\ p_2\,r_2\,y, \ \ \text{когда} \ \ y \geqslant L_1\,x. \end{array} \right.$$

Пусть соотношение (25) верно для N=k-1. Докажем это соотношение для N = k. Для этого рассмотрим процесс $\eta_k(x, y)$ в области $y \leqslant M_k x$. Предположим, что

$$\eta_k(x, y) = \eta_B(k, x, y) = p_2 \left[r_2 y + \eta_{k-1} \left(x, (1-r_2) y \right) \right].$$

Точка $\left(x,\; \left(1-r_2\right)y\right)$ принадлежит области $y\!\leqslant\! L_{k-1}\,x$, так как $M_k\!<\! L_{k-1}.$ Следовательно.

$$\eta_{k-1}\left(x,\ (1-r_2)\,y\right) = \max\left[\eta_A\,\left(k-1,\ x,\ (1-r_2)\,y\right),\ \eta_{C^{k-1}}\,\left(k-1,\ x,\ (1-r_2)\,y\right)\right]$$

$$\eta_k(x, y) = \eta_B(k, x, y) = \max [\eta_{BC}(k, x, y), \eta_{BA}(k, x, y)].$$

В силу теорем 2 и 3 из определения L_k следует, что

$$M_k < L_k$$

И

$$\eta_{BC^{k-1}}(k,\ x,\ y) < \eta_{C^k}(k,\ x,\ y),$$

когда $y \leq M_k x$. Отсюда следует, что

$$\eta_k(x, y) = \eta_B(k, x, y) = \eta_{BA}(k, x, y).$$
 (26)

Далее, на основании теоремы 2 и леммы 2

$$M_k \leq M \leq K \leq L$$

откуда, по определению К,

откуда, по определению
$$K$$
,
$$\eta_{BA}\left(k,\ x,\ y\right) < \eta_{AB}\left(k,\ x,\ y\right),$$
 когда $y\leqslant M_k\,x\!<\!K\!x$, и
$$\eta_{BA}\left(k,\ x,\ y\right) = \eta_{AB}\left(k,\ x,\ y\right),$$

$$\eta_{BA}(k, x, y) = \eta_{AB}(k, x, y),$$

когда $y = M_k x = Mx = Kx$. Но это противоречит соотношению (26). Следовательно.

$$\eta_k(x, y) = \max \begin{cases} \eta_A(k, x, y), \\ \eta_C(k, x, y) \end{cases}$$

в области $y \leq M_k x$. Так как $(1-r_1)L_{k-1} \geq M_k$, то согласно теореме 2

$$\eta_k(x, y) = \varphi_k(x, y) = \begin{cases} \eta_A(k, x, y), & \text{когда } y \leq M_k x \\ \eta_{C^k}(k, x, y), & \text{когда } y = M_k x. \end{cases}$$

Аналогичные рассуждения приводят к равенству

$$\eta_k(x, y) = \psi_k(x, y) = \begin{cases}
\eta_B(k, x, y), & \text{когда } y \ge L_k x, \\
\eta_{C^k}(k, x, y), & \text{когда } y = L_k x.
\end{cases}$$

Так как $L_k > M_k$, то из последних двух равенств, применяя стандартные рассуждения о линейности $\eta_{C^k}(x,\ 1-x)$, получаем

$$\eta_k(x, y) = \eta_{C^k}(k, x, y),$$

когда $M_k x \leqslant y \leqslant L_k x$. Теорема доказана.

Автор выражает глубокую благодарность Э. И. Вилкасу за ценные советы при решении данной задачи.

Институт физики и математики АН Литовской ССР Поступило в редакцию 27.1.1966

ЛИТЕРАТУРА

1. Р. Беллман. Динамическое программирование, ИЛ, Москва, 1960.

DINAMINIO PROGRAMAVIMO PROCESO SU BAIGTINIU ŽINGSNIŲ SKAIČIUMI DICHOTOMINIO IR TRICHOTOMINIO UŽDAVINIO KLAUSIMU

V. BISTRICKAS

(Reziumė)

Nustatomos (1) ir (10) dichotominių uždavinių bei tam tikros klasės (24) trichotominių uždavinių sprendimo sritys.

ON THE DICHOTOMIC AND TRICHOTOMIC PROBLEMS FOR DYNAMIC PROGRAMMING PROCESS WITH FINITE NUMBER STAGES

V. B. BISTRICKAS

(Summary)

There are given the regions of decision for dichotomic processes (1) and (10) and some trichotomic process (24) when number of stages is finite.