ИНТЕГРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА ДЛЯ СХОДИМОСТИ К УСТОЙЧИВОМУ ЗАКОНУ

И. И. БАНИС

В настоящей работе обобщается одна интегральная предельная теорема, доказанная Б. А. Рогозиным в работе [1]. В упомянутой работе рассмотрена последовательность независимых случайных величин

$$\eta_1, \, \eta_2, \, \ldots, \, \eta_n, \, \ldots \tag{1}$$

с функциями распределения

$$F_k(x) = \begin{cases} 0, & x < 0, \\ 1 - \frac{c_k}{x^{\alpha}} - \frac{\alpha_k(x)}{x^{\alpha}}, & x > 0. \end{cases}$$
 (2)

Доказано, что

$$\left\{ \begin{array}{c} \sum_{k=1}^{n} \eta_{k} \\ P \frac{1}{B_{n}} < x \end{array} \right\} \rightarrow G_{\alpha}(x) \tag{3}$$

при $n\to\infty$, где $G_{\alpha}(x)$ — устойчивый закон с показателем α (0 < α < 1), если

 $|\alpha_k(x)| \le \alpha(x) \to 0, (n \to \infty)$ $0 < c' < c_k < c'' < \infty.$

И

В этой работе рассматривается последовательность независимых случайных величин

$$\xi_1, \ \xi_2, \ \ldots, \ \xi_n, \ \ldots$$
 (4)

с функциями распределения

$$F_{k}(x) = \begin{cases} \frac{c'_{k}}{|x|^{\alpha}} + \frac{\alpha'_{k}(x)}{|x|^{\alpha}}, & x < 0, \\ 1 - \frac{c''_{k}}{x^{\alpha}} - \frac{\alpha''_{k}(x)}{x^{\alpha}}, & x > 0. \end{cases}$$
 (5)

Доказывается сходимость

$$P\left\{\begin{array}{c} \sum_{k=1}^{n} \xi_{k} \\ \frac{1}{B_{n}} - A_{n} < x \end{array}\right\} \rightarrow G_{\alpha}(x) \tag{6}$$

при $n\to\infty$, где $G_\alpha(x)$ — устойчивый закон с показателем $\alpha[0<\alpha<2)$, при более общих условиях, чем в работе [1]. В нижесформулированной теореме не требуется равномерного ограничения c_k снизу и сверху.

Теорема 1. Пусть последовательность (4) с функциями распределения (5), показателем α (0 < α < 2) и $c_k = c_k' + c_k'' > 0$ удовлетворяет следующим условиям:

a)
$$|\alpha'_k(x)| \le c_k \alpha \left(\frac{x}{c_k^{\frac{1}{\alpha}}}\right)$$
, $|\alpha''_k(x)| \le c_k \alpha \left(\frac{x}{c_k^{\frac{1}{\alpha}}}\right)$, $\alpha(x) \to 0$, $(|x| \to \infty)$, $\sum_{k=1}^{n} c'_k$ $\sum_{k=1}^{n} c'_k$

B) $\frac{\sum_{k=1}^{n} c_k^{1+|\alpha|}}{B_n^{1+|\alpha|}} \to 0$, $(n \to \infty)$.

Тогда случайные величины бесконечно малы и имеет место интегральная предельная теорема. Характеристическая функция предельного закона в разложении Леви — Хинчина записывается при

 $M(x) = \frac{c^2}{|x|^{\alpha}}, \quad N(x) = -\frac{c^r}{x^{\alpha}}, \quad \sigma^2 = 0,$

где

$$c'=\frac{1}{1+c}, \qquad c''=\frac{c}{1+c}.$$

Постоянная A_n подбирается как и в работе [3], а

$$B_n = \left(\sum_{k=1}^n c_k\right)^{\frac{1}{\alpha}}.$$

Доказательство теоремы. Для последовательности (4) построим схему серий:

$$\begin{aligned} \xi_{11} &= \frac{\xi_1}{B_1} \ , \\ \xi_{21} &= \frac{\xi_1}{B_2} \ , \quad \xi_{22} &= \frac{\xi_2}{B_2} \ , \\ & \dots \\ \xi_{n1} &= \frac{\xi_1}{B_n} \ , \quad \xi_{n2} &= \frac{\xi_3}{B_n} \ , \quad \dots , \quad \xi_{nn} &= \frac{\xi_n}{B_n} \ . \end{aligned}$$

В дальнейшем проверим все условия теоремы 4 из [2] (стр. 132). Докажем бесконечную малость случайных величин:

$$P\{|\xi_k| \geqslant \varepsilon B_n\} = \frac{c_k'}{\varepsilon^{\alpha} R^{\alpha}} + \frac{\alpha_k' (-\varepsilon B_n)}{\varepsilon^{\alpha} R^{\alpha}} + \frac{c_k''}{\varepsilon^{\alpha} R^{\alpha}} + \frac{\alpha_k'' (\varepsilon B_n)}{\varepsilon^{\alpha} R^{\alpha}},$$

согласно условиям (а) и (b)

$$\sup_{1\leqslant k\leqslant n}P\{|\xi_k|\geqslant \varepsilon B_n\}\leqslant \frac{1}{\varepsilon^\alpha B_n^\alpha}\sup_{1\leqslant k\leqslant n}c_k\left[1+\alpha\left(-\frac{\varepsilon B_n}{c_k^\frac{1}{\alpha}}\right)+\alpha\left(\frac{\varepsilon B_n}{c_k^\frac{1}{\alpha}}\right)\right];$$

поэтому

$$\sup_{1 \le k \le n} P\{|\xi_k| \ge \varepsilon B_n\} \to 0, \quad (n \to \infty).$$

Покажем, что при
$$x<0$$
 $\lim_{n\to\infty}\sum_{k=1}^n F_k\left(B_n\,x\right)=\frac{c'}{\mid x\mid^{\overline{\alpha}}}$,

$$\sum_{k=1}^{n} F_{k}(B_{n} x) = \sum_{k=1}^{n} \left[\frac{c'_{k}}{B_{n}^{\alpha} |x|^{\alpha}} + \frac{\alpha'_{k}(B_{n} x)}{B_{n}^{\alpha} |x|^{\alpha}} \right] = \sum_{k=1}^{n} \frac{c'_{k}}{B_{n}^{\alpha} |x|^{\alpha}} + \sum_{k=1}^{n} \frac{\alpha'_{k}(B_{n} x)}{B_{n}^{\alpha} |x|^{\alpha}}.$$

Из условий (а) и (b) следует, что

$$\sum_{k=1}^{n} \frac{\alpha_{k}(B_{n}x)}{B_{n}^{\alpha}|x|^{\alpha}} \leq \max_{1 \leq k \leq n} \alpha \left(\frac{B_{n}x}{\frac{1}{c_{k}}}\right) \sum_{k=1}^{n} \frac{c_{k}}{B_{n}^{\alpha}|x|^{\alpha}} \to 0, \quad (n \to \infty),$$

И

$$\lim_{n\to\infty}\sum_{k=1}^{n}F_k(B_nx)=\frac{c'}{|x|^{\alpha}}; \quad M(x)=\frac{c'}{|x|^{\alpha}}.$$

Покажем, что при x>0.

$$\lim_{n \to \infty} \left\{ -\sum_{k=1}^{n} \left[1 - F_k (B_n x) \right] \right\} = -\frac{c''}{x^{\alpha}},$$

$$-\sum_{k=1}^{n} \left[1 - F_k (B_n x) \right] = -\sum_{k=1}^{n} \left[\frac{c''_k}{B_n^{\alpha} x^{\alpha}} + \frac{\alpha''_k (B_n x)}{B_n^{\alpha} x^{\alpha}} \right] =$$

$$= -\sum_{k=1}^{n} \frac{c''_k}{B_n^{\alpha} x^{\alpha}} - \sum_{k=1}^{n} \frac{\alpha''_k (B_n x)}{B_n^{\alpha} x^{\alpha}}.$$

Из условий (а) и (б) следует также, что

$$\lim_{n\to\infty}\left\{-\sum_{k=1}^{n}\left[1-F_{k}\left(B_{n}x\right)\right]\right\}=-\frac{c^{*}}{x^{\alpha}},$$

так как

$$\sum_{k=1}^{n} \frac{\alpha_{k}''(B_{n}x)}{B_{n}^{\alpha}x^{\alpha}} \leq \max_{1 \leq k \leq n} \alpha \left(\frac{B_{n}x}{\frac{1}{c_{k}}}\right) \sum_{k=1}^{n} \frac{c_{k}}{B_{n}^{\alpha}x^{\alpha}} \to 0, \quad (n \to \infty); \quad N(x) = -\frac{c''}{x^{\alpha}}.$$

c' и c'' — положительные и конечные постоянные. Докажем, что $\sigma^2 = 0$. Для этого воспользуемся неравенством

$$0 < \int\limits_{|x| < \varepsilon} x^2 dF_{nk}(x) - \left[\int\limits_{|x| < \varepsilon} x dF_{nk}(x) \right]^2 < \int\limits_{|x| < \varepsilon} x^2 dF_{nk}(x).$$

Достаточно показать, что

$$\lim_{\epsilon \to \infty} \lim_{n \to \infty} \sum_{k=1}^{n} \int_{|x| < \epsilon} x^2 dF_{nk}(x) = 0.$$

$$\sum_{k=1}^{n} \int_{|x|<\epsilon} x^{2} dF_{nk}(x) = \sum_{k=1}^{n} \int_{|x|<\epsilon} x^{2} dF_{k}(B_{n}x) = \frac{1}{B_{n}^{2}} \sum_{k=1}^{n} \int_{|y|<\epsilon B_{n}} y^{2} dF_{k}(y) = I_{1} + I_{2},$$

где

$$I_{1} = \frac{1}{B_{n}^{2}} \sum_{k=1}^{n} \int_{-\epsilon B_{n}}^{0} y^{2} dF_{k}(y), \quad I_{2} = \frac{1}{B_{n}^{2}} \sum_{k=1}^{n} \int_{0}^{\epsilon B_{n}} y^{2} dF_{k}(y).$$

Оценим интеграл I_2 . Для этого I_2 представим в виде суммы двух интегралов:

$$I_2 = I_1' + I_2',$$

где

$$I'_{1} = \frac{1}{B_{n}^{2}} \sum_{k=1}^{n} \int_{0}^{c_{k}^{2}} y^{2} dF_{k}(y), \quad I'_{2} = \frac{1}{B_{n}^{2}} \sum_{k=1}^{n} \int_{c_{n}^{2}}^{cB_{n}} y^{2} dF_{k}(y).$$

Оценим I_1' :

$$I_1' \leqslant \frac{1}{B_n^2} \sum_{k=1}^n c_k^{\frac{2}{\alpha}} \to 0, \quad (n \to \infty).$$

Это следует из условия (в).

Оценим I_2 , применяя интегрирование по частям:

$$I_{2}' = -\frac{1}{B_{n}^{2}} \sum_{k=1}^{n} \int_{\frac{1}{\alpha}}^{\epsilon B_{n}} y^{2} d\left[1 - F_{k}(y)\right] = -\frac{1}{B_{n}^{2}} \sum_{k=1}^{n} y^{2} \left[1 - F_{k}(y)\right] \Big|_{c_{k}^{\frac{1}{\alpha}}}^{\epsilon B_{n}} + \frac{2}{B_{n}^{2}} \sum_{k=1}^{n} \int_{\frac{1}{\alpha}}^{\epsilon B_{n}} y \left[\frac{c_{k}''}{y^{2}} + \frac{\alpha_{k}''(y)}{y^{2}}\right] dy.$$

Из условий теоремы следует, что

$$-\varepsilon^{2}\sum_{k=1}^{n}\left[\frac{c_{k}''}{\varepsilon^{\alpha}B_{n}^{\alpha}}+\frac{\alpha_{k}''(\varepsilon B_{n})}{\varepsilon^{\alpha}B_{n}^{\alpha}}\right]+\frac{1}{B_{n}^{2}}\sum_{k=1}^{n}c_{k}^{\frac{2}{\alpha}}\left[1-F_{k}(c_{k}^{\frac{1}{\alpha}})\right]\rightarrow-\varepsilon^{2-\alpha}c''$$

при $n \to \infty$.

Оценим второе слагаемое I_2' . Из условий (a), (б) и (в) следует, что

$$\frac{2}{B_n^2} \sum_{k=1}^n \int_{\frac{1}{\alpha}}^{\epsilon B_n} y \left[\frac{c_k''}{y^{\alpha}} + \frac{\alpha_k''(y)}{y^{\alpha}} \right] dy = \frac{2}{B_n^2} \sum_{k=1}^n c_k'' \int_{\frac{1}{\alpha}}^{\epsilon B_n} y^{1-\alpha} dy +$$

$$+ \frac{2}{B_n^2} \sum_{k=1}^n \int_{\frac{1}{\alpha}}^{\epsilon B_n} \alpha_k''(y) y^{1-\alpha} dy \leqslant \frac{2}{(2-\alpha)B_n^2} \epsilon^{2-\alpha} B_n^{2-\alpha} \sum_{k=1}^n c_k'' - \frac{2}{(2-\alpha)B_n^2} \sum_{k=1}^n c_k'' \frac{2-\alpha}{\alpha} +$$

$$+ \frac{2}{(2-\alpha)B_n^2} \max_{1 \leqslant k \leqslant n} \max_{\substack{\frac{1}{\alpha} \\ c_k \leqslant y \leqslant \epsilon B_n}} \alpha \left(\frac{y}{c_k'} \right) \sum_{k=1}^n c_k \frac{2-\alpha}{\alpha} + \frac{2\epsilon^{2-\alpha}c''}{2-\alpha} + \frac{2\epsilon^{2-\alpha}c_2}{2-\alpha} ,$$

$$- \frac{2}{(2-\alpha)B_n^2} \max_{1 \leqslant k \leqslant n} \max_{\substack{\frac{1}{\alpha} \\ c_k \leqslant y \leqslant \epsilon B_n}} \alpha \left(\frac{y}{c_k'} \right) \sum_{k=1}^n c_k \frac{2-\alpha}{\alpha} \rightarrow \frac{2\epsilon^{2-\alpha}c''}{2-\alpha} + \frac{2\epsilon^{2-\alpha}c_2}{2-\alpha} ,$$

при

$$t \to \infty$$
.

где

$$\tilde{c_2} = \lim_{n \to \infty} \max_{1 \le k \le n} \max_{\substack{\frac{1}{c_k} \\ c_k^{\frac{1}{c_k}} \le y \le \varepsilon B_n}} \alpha \left(\frac{y}{\frac{1}{c_k}} \right).$$

 I_1 оценивается аналогично и стремится при $n \rightarrow \infty$ к

$$-\,\varepsilon^{2-\alpha}\,\,c'\,+\frac{2\varepsilon^{2-\alpha}\,c'}{2-\alpha}+\frac{2\varepsilon^{2-\alpha}\,\tilde{c}_{\,1}}{2-\alpha}\,\,,$$

где

$$\tilde{c}_1 = \lim_{n \to \infty} \max_{1 \le k \le n} \max_{\substack{-\epsilon B_n \le y \le -c_k^{\frac{1}{\alpha}}}} \alpha \left(\frac{\frac{y}{\frac{1}{\alpha}}}{c_k^{\frac{1}{\alpha}}}\right).$$

Получили, что

$$\lim_{n\to\infty}\sum_{k=1}^n\int\limits_{|x|\leq \xi}x^2\,dF_k\left(B_n\,x\right)=\frac{\varepsilon^{2-\alpha}\left[\alpha\left(c'+c''\right)+2\left(\tilde{c}_1+\tilde{c}_2\right)\right]}{2-\alpha}\,,$$

И

$$\lim_{\varepsilon \to \infty} \lim_{n \to \infty} \sum_{k=1}^{n} \int_{|x| < \varepsilon} x^2 dF_k(B_n x) = 0.$$

Теорема полностью доказана.

ЛИТЕРАТУРА

- Б. А. Рогозин, Некоторые задачи из области предельных теорем, Теория вероятностей и ее применение, 3, 2 (1958), 186-195.
- Б. В. Гнеденко, А. Н. Колмогоров, Предельные теоремы для сумм независимых случайных величин, М. – Л., 1949.
- 3. Б. В. Гнеденко, В. С. Королюк, Несколько замечаний к теории области притяжения устойчивых распределений, ДАН, УССР, 4 (1950), 275—278.

INTEGRALINĖ TEOREMA STABILAUS RIBINIO DĖSNIO ATVEJU

J. BANYS

(Reziumė)

Straipsnyje nagrinėjama nepriklausomų atsitiktinių dydžių seka (4) su pasiskirstymo funkcijomis (5). Irodoma, kad, esant sąlygoms (a), (6) ir (B),

$$P\left\{\begin{array}{c} \sum_{k=1}^{n} \xi_{k} \\ \frac{1}{B_{n}} - A_{n} < x \end{array}\right\} \rightarrow G_{\alpha}(x), \qquad (n \rightarrow \infty),$$

kur $G_{\alpha}(x)$ - stabilus dėsnis su rodikliu α (0 < α < 2).

INTEGRALER GRENZWERTSATZ FÜR DIE KONVERGENZ GEGEN DAS STABILE GRENZGESETZ

J. BANYS

(Zusammenfassung)

In dieser Arbeit wird die Folge (4) unabhängiger Zufallsgroßen mit der Verteilungsfunktion (5) betrachtet. Es wird bewiesen, daß bei der Bedingungen (a), (6) und (a)

$$P\left\{\begin{array}{c} \sum_{k=1}^{n} \xi_{k} \\ \frac{1}{B_{n}} - A_{n} < x \end{array}\right\} \rightarrow G_{\alpha}(x), \qquad (n \rightarrow \infty),$$

gilt, wobei G(x) Stabilgesetz mit $\alpha (0 < \alpha < 2)$ ist.