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1. Introduction. For each positive integer D which exceeds 1, and which satisfies one of the conditions — D≡0,l (mod 4), let h(-D) denote the number of classes of primitive binary quadratic forms whose discriminant is - D.For each pair of real numbers z, x > 0 let N (x, z) denote the number of integers D not exceeding x for which the inequality k(-D)<~ ]∕ Dz is satisfied. It was shown by Chowla and Erdös [2] that the limitlimχ-1W(x, z)
x→<o exists for all real values of z, and is a continous distribution function. Some years later Barban [1] used the inequality of the Large Sieve of U. V. Linnik, and ame- hod somewhat different from that of Chowla and Erdös, to compute the moments__ [ot the function D 2 h(— D). In this way he recovered their result. He proved, moreover, that the characteristic function of this limiting distribution assumed the form

CD

⅛=0n a certain range 111 < l0, t0 > 0. In this expression α0 = 1, and
*>= ∑ , (*=1,  2, ...>

n= 1
(л, 2)=lwhere Φ (n) denotes Euler’s totient function, and τt (m) denotes the number о ways of expressing the integer m as the product of к integers.In the present paper we shall show that the study of the distribution of the values of D 2 ∙ Λ (— D) can be reduced to the consideration of sums of independent random variables defined on a finite probability space. The appropriate characteristic functions take on a simple form, so that it proves possible to largely determine the nature of the limiting distribution. In particular we shall prove that it has a probability density, and that it is analytically continuable into a complex half-plane. We shall also measure the rate of convergence of the frequencies x^l N(x, z) to the limiting distribution as x→∞.
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For each value of x>0 we writeV, (D; A(-D)<∣ l∕De') = (l x)^' N(x, e>).

Theorem. There is a distribution function F(z) with the following properties(i) The estimatev1 (z>; h(-D)<l l∕Pe≈) = F(z) + θ(y≡^jr (x>3)> 
holds uniformly for all real values of z.(ii) The characteristic function of F(z) takes the form

(iii) The function F(z) has a probability density, and can be analytically 
continued into a half-plane Im (z) > — c, c> 0.The presence of the untidy factor in the product representation of the characteristic function of F (z) is due to the irregular behaviour of the prime 2, which is characteristic of problems of a quadratic nature. We shall prove that this function is even Riemann integrable over the whole line. The statement in (iii) that F(z) is analytically continuable into a complex half-plane is to be interpreted in the sense that it coincides for all real values of t with a function which is analytic in a half-plane. In particular we recover the assertion of Chowla and Erdös [2] that F(z) is continuous at all finite real points z.The starting point of all of these investigations is a classical result of Dirichlet. For our purposes this states that for D > 4,A(-0) = jv- i(l. Zo)where i(l. Zd)=∑ Zd(")"^1, Zd(h) = (~^]>f.=ιand χ0 denotes a Kronecker symbol. We shall preserve this notation for the duration of this paper.
Lemma 1. Let ε>0 be given. Then we can find a real number A, depending 
upon ε, and for each value of x>3 a (possibly empty) set E(x) with the follow
ing properties'.(i) Let D be an integer not exceeding x which does not lie in E(x). Then 
the approximate relations

L(l, χ,) = { 1+0 (-rA-)}∏ (l-χ(p)p→)-,
hold uniformly for all real numbers H which satisfy H^(\Qgx)A, and for all 
primitive characters χ (mod D).(ii) The number of integers belonging to E(x) is at most 0(xe).
Proof. This lemma can be proved on exactly similar lines to Theorem 1 of the author's paper [3].
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Lemma 2. Let a1, a2 be a sequence of complex numbers, and let xt H be 
real number satisfying x> 1, ∕f>3. Then the Kronecker symbol satisfies the ine∙ 
quality Σ I Σ α"(5r) Γ≤x ΣΣ ∣ara⅛∣+cι^ι°s^(∑ !⅛∣)2∙ P≤x n≤∕f mn≈t∖ 2t*  mζH

m⅛H, n^H

In this inequality we tacitly assume that any integer D under consideration in 
the left hand sum satisfies — Z>≡O,1 (tnod4), so that the Kronecker symbol is 
well defined.
Proof. If we expand the sum on the left hand side of this inequality and invert the order of summation we obtainΣΣ °-∙- Σ (⅛) (÷r)÷ ΣΣ "-⅛Σ(⅛)(⅛)∙ 

mn=t*.  2f, D≤x mn≠t*,  2f, Diι
m≤H, n≤H m≤H,n⅛HWe can estimate the first of these threefold sums trivially. As to the second, for each value of m>0, there is a number εra= ± 1, so that

for all values of D. Moreover if m = 2um1, 2fm1, n = 2°n1, 2Jfn1, then
Thus if ’ denotes summation over the reduced residue classes (mod 8), we can write the innermost sum in the form'"c"Σ^(7Γ Σ (.⅛)÷∙--Σ(⅛)

J D≤x 4λ≤x
Dsj (mod 8)where the last sum (over s) is to be omitted if mn is even. If mn≠l5, 2r2, then mln1 is not an integral square, and when 2,∣7nn neither is mn. All of the symbols in these last expressions are then Jacobi symbols, and поп-principal characters (mod m1n1), or (mod mn). An appeal to the Polya — Vinogradov inequality therefore shows that these sums are О (Я log H), and lemma 2 follows immediately.

Lemma 3. Let η, В be real numbers satisfying B>0, 0<η<l. For each x≥2 
there is a set G(x) possessing the following two properties(i) If D satisfies D≤x, DφG(x), — D≡ 0,1 (mod 4), then the Kronecker 
symbol satisfiesi<'-z.>={'+"(l'⅛x)I ∏ ('-χ∙⅛>l>-Γ

p ≤ η log x(ii) The number of integers contained in G(x) is at most 0 (x(logx)^jj∙ 
Proof. We first prove this result under the addition restriction that the integers 
— D involved only run through the fundamental discriminants. When this is the case the Kronecker symbol becomes a primitive character (mod D). 'Ne therefore assume that G(x) contains the set £(x) of lemma 1, defined with ε=l∕2.
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Set [∕=ηlogx, ∕f= (log x)∙4, Ps=Flogx (log logx,)^1. For each positive integer к we define a sequence of real numbers al, a2, byr* = ∑ [ Σ Xn(p)]2t=∑ [ ∑ <Wd("≈)]2D≤x U<piH Dtx mβ∏kwhere ’indicates summation over those integers D for which -D is a fundamental discriminant. Applying lemma 4 we deduce that
T∣t≤x ∑∑ amal,m^1n^l + c1HklogHk ( ∑ j)** ’m∕ι=l,, 2tt U<p≤HConsider the expression^ = ∑-∑⅛

U<pj≤HΛ "ik=l'

-^k=∑∑ amanm-kn→. 

nιπ = tt, 2lt

The condition pl. .ρ2fc = ∕2 ensures that there is a value of j satisfying 1 ≤y≤ 2k — 1 so that pj=p2k' considering each possibility in turn we see thatLt≤(2fc-1) 2 y bt-1≤ ≤2*fcl(∑  jr)"

U<p≤H p>UMoreover, an elementary estimate shows that 
U<p≤Hso that
Tk ≤ x2k k∖ (⅛ )t + cl (c22 H)k log Hk.The number of integers D not exceeding x for which the estimateI 2 ∕.d(P)P~1 ∣>P~1

U<p≤Hholds is then at mostp≈tTt = θ(x(logx)-β)provided that F and so к is chosen suitably. For the remaining values of D we see thatid. χo) ∏ (>-xo(p)p-1)=(1 + o(⅛)) ×∕>≤l∕ '×exp ∣O(p'1) + O ( -Ji-)!=l+O(p-1).1 l∕<p≤HCall the set of integers D≤x which are exceptional in the above sense J(x).We now use the fact that any integer D can be uniquely represented in the form 
D2lDlt where μ2 (Di) = l. We define G (x) to consist of all those integers D not exceeding x which satisfy any of the following conditions:3(i) 2)≤x
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(ii) D has more than (1 + 2B) log log x distinct prime divisors.£(iii) There is an integer m satisfying g- x4 ≤2m≤4x so that D2 lies in J (2m). It is now an easy exercise to prove that this set satisfies all of the properties required in the lemma.
Construction of the finite probability spacesLet P, x be real numbers, and let q1, q2, be a sequence of к prime numbers which are constrained by2≤tf1≤⅛2≤ . .≤⅛t≤P, q1 qk = R.We form an algebra of sets {£} by taking as a typical member the union of residue classes (mod R). If A is any finite set of distinct positive integers, then the collection {Λ ∩ £}, where A ∩ E is to be interpreted as those members of A which belong to any of the residue classes (mod R) which are represented by E is also an algebra. For each class Z (mod Λ), let A (x, R, I) denote the number of members ai of A which do not exceed x, and which satisfy ai≡l (mod R). Let A (x) denote the total number of a, not exceeding x. Further let there be R numbers λ (Z, Λ), so that the asymptotic estimateя2 M(x, R, Z)-λ(Z, Λ)Λ(x)∣ = o (λ (x)j, (x→co).∕=ιThis hypothesis is to be interpreted in the sense that the set A, the modulus R and the numbers λ (Z, R) all may depend upon x.

We define a measure on this last algebra as follows. Let E represent the classes Z, (mod R), (y=l, —> m)- Then we set
m

μ. (A ∩f) = ∑ λ(Zp R).
j=iIt is clear that

R∑ λ(∕, R}= 1/-Iand that the pair ({A ∩ F}, μ) is a finite probability space. Moreover, if we denote by IВ the number of integers in the set B, then
B∣ = { l+o(l)} μ,B∙A(x).We form two models Λf1, M2, by taking A to be

{D; D≤x, -P≡⅛(mod4)}, (√=1, 2),with <∕1 = 0, d2 = 1 respectively. In both models we set P= logx. In the first model we set q2 = 3, q3=s, so that the qj are the first π logx) — 1 distinct odd primes. In the second we set ⅞1 = 2, q2=2, q3 = 2, qi = 3, qs = 5..............and soon. Thus the respective values of R are p2 pk, and 4p1 .. .p∣t, where pj deno-
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tęs the j'h rational prime. In both cases A (x) = y x+O (1). For M1 we set λ (∕, R)=R~1 for each value of I, and for Λf2 we setλ(∕, Λ) = (4 ifz≡1 or 5(mod8)>10 otherwise.Denote the respective measures so defined on the spaces Mj by μj, (j = 1, 2). In either model, by virtue of our choice of R we shall have the estimate∣B∣ = μB∙Λ(x) + O(√)∙In these spaces we define independent random variables Xj for j=2,.. .,k, and y=l, ..., ⅛, respectively, byX7(D)=-log(l-(^)9-')∙
Finally, for i=l, 2 definevį(l>; L(l, χD)<e2) = 7{Λ∙, D≤x,-D≡d∣ (mod 4), L(l, χ1,)<e2}. 

Lemma 4. For any fixed value of B, there is an absolute constant c3 so that the 
estimate

vx (/); h(-D)<^ ]∕Dezj = ~ ∑ μ√*ι+  ■ - - +xm<z) +

J=l

+ θ∑ μ> (lA+-∙∙+^-^∣≤c3]∕⅛^) + θ((logx)-β), (∣Θ∣≤1), y=l
holds uniformly for all real values of z.In this result, and for the remainder of the proof of our theorem, the symbol 
xl is to be deleted from the terms involving μ1.
Proof. In terms of the frequency function used in the statement of Theorem 1 we see that v1(β-, Λ(-D)<∣ l∕De') = ∣ ∑ vj(D∙, L(l, χ0)<e*)∙∕-∣The present representation theorem now follows from lemma 3.For each value of j setF>(z) = μj.(X1+ ... Xm<z).We shall consider the space Λf1 in detail. The model Λfa can be similarly treated. The random variable xj (in Af1) has the characteristic function

^4÷÷(14Γ÷U1-⅛)(1÷⅛ΓThere is an absolute constant ei, so that if t<clqj is satisfied, thenφj.w=i÷⅛-¾÷o(J^)∙We define
g1ω=∏ φ7∙ω∙√≡∣It is clear that this infinite product converges uniformly in any bounded regionof the complex t-plane, thus gl (r) is an integral function of t.
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Lemma 5. There exist positive constants cr, r≡5, ..., 9t so that

(i) lgιW∣≤<⅛e-c∙,'l
for all real values of t,

(ii) ∣ ∏φj∙w-glω∣≤c[(⅛+⅛]∣g1(0∣y-∣
for all values of 111 ≤ cβ ]∕logx, for all x > ce.
Proof. For each integer √>2 and all sufficiently large values of t which satisfy 11Į ≤ caqj, we obtain the inequality∣RelogΦ√r)∣≤l = ⅛∙
Since for real values of t, the characteristic function Φj (r) satisfies I Φy (t) ∣ ≤ 1, it follows that

⅛ (t) I ≤ exp (y 2 ^i)≤exP(-cs∣< I)-
⅞>e.'ll', jFor absolutely small values of t the inequality (i) follows from the continuity of 

gι W∙The second inequality has an equally simple proof.
Lemma 6. Let F(z) be a non-decreasing function, and G (z) a function of 

bounded variation, whose respective Fourier — Stieltjes transforms are f (f), and g (t), 
and which satisfy(i) F( ± co) = G( ± αo),(ii) ∫ ∣F(z)-G(z)∣<fe< ∞,— ®(iii) G' (z) exists for all values of z, and ∣ G' (z) ∣ ≤ H. Let T be a positive real 
number. Then to every k>l, there corresponds a further positive number c(k), 
depending only upon k, so thatsup∣F(z)-G(z)∣≤c(fc) +A ∫ j j λ.
Proof. A proof of this lemma of Esseen, can be found in Gnedenko and Kolmogorov [5], Chapter 8, § 39, or in Esseen’s original paper [4].
Proof of the theoremSince for any real value of t gl (t) is the limit of characteristic functions, and is continuous at the origin, it is the characteristic function of a distribution function G1 (z), with the property that Fį (z)→G1 (z) as x→∞.We apply lemma 6 with F(z) = F↑(z), G(z) = G1(z), k=l, T=cβI∕loβ.v. We see from lemma 5 (i) that g1 (r) is integrable over the whole real line, so that G1 (x) has a probability density,βc

2'- f gι(t)e-iadl.
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It follows from this representation that
-^+rσlw =⅛

— аз —a>the operation being justified by the dominated convergence theorem for Lebesgue integrals. Indeed it is clear from this argument that CP (z) is even analytically continuable into a half plane Im (z)>-c, c>0.We deduce thatFi(z) = <P(z) + θ(-pjl=-), (x>c,).In a precisely similar way we can consider the space Mi, and obtain functions g2(0> ≡nd G2(z). We set G(z)=y ((G1 (z)+Ga(z)j so that G(z)has the characteristic function4 (ft(f)+ftω)=4 [2+2''+(∣)"] ∏ φ√o.
<fy>3and

2∣∑∕'<y* ..∙+^<z)=σ(z)+o(1^).
The assertion (i) of the theorem now follows from lemma 4, and the fact that the inequalityG (z+A)-G (z) = O (∣ A ∣)holds uniformly for all real values of z and h. This completes the proof of the theorem.
University of Nottingham Received May 18, 1969
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KVADRATINIŲ FORMŲ KLASIŲ SKAIČIAUS PASISKIRSTYMAS

P. D. T. A. Elliott

{Reziumė)

Naudojant tikimybinę interpretaciją, straipsnyje įrodoma, kad atitinkamai normuotas tei
giamų binarinių kvadratinių formų klasių skaičius turi tolydinę ribinę pasiskirstymo funkciją. 
Įvertinamas konvergavimo į ribinę funkciją greitis.
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РАСПРЕДЕЛЕНИЕ ЧИСЛА КЛАССОВ КВАДРАТИЧНЫХ ФОРМ

П. Д. Т. А. Эллиотт

(Резюме)

Используя вероятностную интерпретацию автор доказывает, что соответственно нор« 
мированное число классов положительных бинарных квадратичных форм имеет непрерыв
ную предельную функцию распределения.

Оценивается скорость сходности к предельному закону.




