1074

УДК 517.548

РЕШЕНИЕ НЕКОРРЕКТНОЙ ЗАДАЧИ ДЛЯ ЛИНЕЙНОГО УРАВНЕНИЯ С ЛИНЕЙНЫМ НЕОГРАНИЧЕННЫМ СИММЕТРИЧЕСКИМ ОПЕРАТОРОМ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

Б. И. Кунейкайте

Введение

В работе рассматривается уравнение

$$Af = g, (1)$$

где A — линейный неограниченный симметрический оператор в гильбертовом пространстве H, в том случае, когда не существует всюду определенного ограниченного обратного оператора A^{-1} (иначе говоря, нулевая точка принадлежит спектру оператора A), но существует хотя бы одно решение уравнения (1). В этом случае решения уравнения (1) не являются непрерывно зависящими от вариаций правой стороны и от вариаций самого оператора A, т.е. задача является некорректной.

Обзор по некорректным задачам можно найти в [1].

В настоящей работе наряду с уравнением (1) рассматривается уравнение

$$(A_{\delta_n} + i\alpha_n I)f = g_{\delta_n}, \tag{2}$$

где $A_{\delta_n} = A + \delta_n A$, $\delta_n A$ — ограниченный симметрический оператор в пространстве H, $|| \delta_n A || \leqslant \delta_n$: $g_{\delta_n} \in H$, $|| g - g_{\delta_n} || \leqslant \delta_n$, α_n , $\delta_n > 0$.

В работе доказывается, что в том случае, когда для некоторых последовательностей положительных чисел $\{\delta_n\}$ и $\{\alpha_n\}$, $\alpha_n=\alpha_n$ (δ_n) , α_n , $\delta_n\to 0$ и $\delta_n=o$ (α_n) , существуют решения уравнений (2) $f_{\delta_{n_1}\alpha_n}$, а также для некоторых $\{\delta_n'\}$ и $\{\alpha_n'\}$ — решения уравнений

$$(A + i\alpha'_n I)f = g_{\delta'_n}, \tag{3}$$

где $\{\delta_n'\}$ и $\{\alpha_n'\}$ — последовательности чисел, удовлетворяющих тем же условиям, что и $\{\alpha_n\}$, $\{\delta_n\}$ (возможно $\delta_n = \delta_n'$, $\alpha_n = \alpha_n'$) и $||g - g_{\delta_n}|| \le \delta_n'$, f_{δ_n, α_n} сходится к нормальному решению (к решению с наименьшей нормой) уравнения (1).

Совсем аналогично задача решается в работе [3], только там рассматривается уравнение, когда A — линейный самосопряженный оператор.

В настоящей работе будем пользоваться терминами, определениями и теоремами, изложенными в [2], [4], [5]. Особенно воспользуемся тем, что каждый симметрический оператор можно продолжить до самосопряженного оператора (см. теоремы [2] и [4]).

1. Рассмотрим уравнение

$$Af = g, (1)$$

где A — замкнутый неограниченный симметрический оператор, область определения которого D_A плотна в H, в том случае, когда не существует обратный ограниченный оператор A^{-1} , но существует решение уравнения (1). В этом случае решения уравнения Ah=0 образуют линейное, замкнутое множество H_1 (линейность и замкнутость следуют из того, что A — линейный и замкнутый), которое является подпространством пространства H ($H_1 \subset H$).

Тогда каждое решение уравнения (1) можно записать в виде:

$$f=f^*+h$$
,

где $h \in H_1$, т.е. h — решение уравнения Ah = 0, а $f^* \perp H_1$. Так как

$$||f||^2 = ||f^*||^2 + ||h||^2 \ge ||f^*||^2$$

то f^* – нормальное решение уравнения (1). Не трудно доказывается единственность этого решения. Уравнения

$$(A_{\delta_n} + i\alpha_n I)f = g_{\delta_n}, \tag{2}$$

$$(A+i\alpha_n'I)f=g_{\delta_n'}, \tag{3}$$

где $A_{\delta_n},\ g_{\delta_n},\ g_{\delta_n'}$ — определены в начале работы, имеют, очевидно, единственные решения.

2. Рассмотрим уравнения

$$Af = g, (1)$$

$$B^+f=g, (4)$$

где B^+ — самосопряженное расширение оператора A с выходом из пространства H в H^+ (H^+ — гильбертово пространство, содержащее пространство H, $H \subset H^+$) [2], [4].

Докажем, что, если только уравнения

$$(A + i\alpha'_n I)f = g_{\delta'_n} \tag{3}$$

имеют решения $f_{\delta'_{n},\alpha'_{n}}$, δ'_{n} , $\alpha'_{n} \to 0$ и $\delta'_{n} = o\left(\alpha'_{n}\right)$, то нормальные решения уравнений (1) и (4) совпадают.

Допустим, что нормальные решения уравнения (1) f^* , а уравнения (4) — \tilde{f} . Так как решения уравнения (1) являются решениями уравнения (4), то

$$||\tilde{f}||_{H^+} \leq ||f^*||_{H^+}$$

Пусть $f_{\delta'_{n},\alpha'_{n}}$ — решения уравнений (3). Тогда $Af_{\delta'_{n},\alpha'_{n}} = B^{+}f_{\delta'_{n},\alpha'_{n}}$ и $f_{\delta'_{n},\alpha'_{n}}$ удовлетворяют уравнениям

$$B^{+}f_{\delta'_{n}\alpha'_{n}} + i\alpha'_{n}f_{\delta'_{n}}, \alpha'_{n} = g_{\delta'_{n}}. \tag{5}$$

Когда $n \rightarrow \infty$, тогда $\alpha'_n \rightarrow 0$, $g_{\delta'_n} \rightarrow g$, и мы получим

$$B^+f_{\delta'_{n},\alpha'_{n}}\rightarrow g, f_{\delta'_{n},\alpha'_{n}}\rightarrow \tilde{f}$$

(см. [3]). Значит, $||f_{\delta'_{n},\alpha'_{n}}-f_{\delta'_{m},\alpha'_{m}}||_{H^{+}}\to 0$. Но

$$||f_{\delta'_{n}} \alpha'_{n} - f_{\delta'_{m}} \alpha'_{m}||_{H^{+}} = ||f_{\delta'_{n}} \alpha'_{n} - f_{\delta'_{m}} \alpha'_{m}||_{H} \rightarrow 0.$$

Значит, $f_{\delta'_{n,\alpha'_{n}}}$ сходится в H и поэтому $\tilde{f} \in H$. Из уравнения (3), когда $n \to \infty$, получим $Af_{\delta'_{n,\alpha'_{n}}} \to f$, $f_{\delta'_{n,\alpha'_{n}}} \to \tilde{f}$. Так как оператор A замкнут, то $f \in D_A$ и $A\tilde{f} = g$, и должно быть $||\tilde{f}|| > ||f^*||$. Поэтому $||f^*|| = ||f||$. Но нормальное решение единственно и поэтому $f^* = f$. В частном случае, когда B^+ существует в пространстве H (т.е. $H^+ = H$), нормальные решения уравнений (1) и (4) совпалают.

3. Рассмотрим уравнения

$$Af = g \tag{1}$$

И

$$(A_{\delta_n} + i\alpha_n I)f = g_{\delta_n}. (2)$$

Пусть уравнение (2) имеет решение $f_{\delta_{n}, \alpha_{n}}$ (n=1, 2, ...). Оно будет единственно и будет удовлетворено равенство

$$(A_{\delta_n} + i\alpha_n I) f_{\delta_n, \alpha_n} = g_{\delta_n}. \tag{6}$$

Заменим $A_{\delta_{-}}$ через $A + \delta_{n} A$ и после переобразования получим:

$$(A+i\alpha_n I)f_{\delta_n,\alpha_n}=g_{\delta_n}+(A-A_{\delta_n})f_{\delta_n},\alpha_n.$$

Составим уравнение

$$(A + i\alpha_n I)f = g_{\delta_n} + (A - A_{\delta_n})f_{\delta_n}, \alpha_n.$$
 (7)

Оно имеет решение f_{δ_n, α_n} , и решение единственно. Оператор $(A+i\alpha_n I)^{-1}$ существует в точке $g_{\delta_n}+(A-A_{\delta_n})f_{\delta_n, \alpha_n}$ и ограничен в своей области определения. Из (7) получим:

$$f_{\delta_n, \alpha_n} = (A + i\alpha_n I)^{-1} \left(g_{\delta_n} + (A - A_{\delta_n}) f_{\delta_n, \alpha_n} \right). \tag{8}$$

Совсем аналогично, подставляя в уравнение (1) его нормальное решение f^* и прибавляя к обеим сторонам полученного уравнения по $i\alpha_n f^*$, получим:

$$Af^* + i\alpha_n f^* = g + i\alpha_n f^*,$$

$$(A + i\alpha_n I)f^* = g + i\alpha_n f^*,$$

$$f^* = (A + i\alpha_n I)^{-1}(g + i\alpha_n f^*).$$
(9)

Вычитая (9) из (8), получим:

$$f_{\delta_n, \alpha_n} - f^* = (A + i\alpha_n I)^{-1} \left(g_{\delta_n} - g + (A - A_{\delta_n}) f_{\delta_n, \alpha_n} - i\alpha_n f^* \right).$$

Отсюда совсем так же, как в работе [3], получим:

$$||f_{\delta_n},_{\alpha_n} - f^*|| \leq \delta_n ||(A + i\alpha_n I)^{-1}||(1 + ||f_{\delta_n},_{\alpha_n}||) + \alpha_n ||(A + i\alpha_n I)^{-1} f^*||. (10)$$

Пусть самосопряженное расширение B^+ оператора A существует только с выходом из пространства H в H^+ ; тогда, если f удовлетворяет уравнению

$$Af + i\alpha_n f = \tilde{g}$$

то оно тем более будет удовлетворять уравнению

$$B^+ f + i\alpha_n f = \tilde{g}$$
.

Тогда

$$f = (A + i\alpha_n I)^{-1} \tilde{g} = (B^+ + i\alpha_n I)^{-1} \tilde{g}, f, \tilde{g} \in H.$$

Из (10) получим:

$$||f_{\delta_n},_{\alpha_n}-f^*|| \leq \delta_n ||(B^++i\alpha_n I)^{-1}||(1+||f_{\delta_n},_{\alpha_n}||)+\alpha_n ||(B^++i\alpha_n I)^{-1}f^*||.$$

Мы получили совсем такое же неравенство, как в работе [3], где доказано, что правая часть всегда сходится к нулю, как только α_n , $\delta_n \rightarrow 0$, $\alpha_n = \alpha_n$ (δ_n) и $\delta_n = o$ (α_n) (если f^* — нормальное решение не только уравнения (1), но и уравнения (4)).

Таким образом, мы доказали следующее утверждение.

Теорема. Пусть A — линейный, замкнутый и неограниченный симметрический оператор, область определения которого плотна в гильбертовом пространстве H, и пусть не существует обратного ограниченного оператора A^{-1} , но существует хотя бы одно решение уравнения

$$Af = g. (1)$$

Tогда, если только существуют решения $f_{\delta_{n,\alpha_{n}}}$ уравнений

$$(A_{\delta_n} + i\alpha_n I)f = g_{\delta_n} \tag{2}$$

И

$$(A+i\alpha'_n I)f = g_{\delta'_n}, (3)$$

где δ_n , $\alpha_n > 0$, α'_n , $\delta'_n > 0$, $\alpha_n = \alpha_n (\delta_n)$, $\alpha'_n = \alpha'_n (\delta'_n)$ и $A_{\delta_n} = A + \delta_n A$, $\delta_n A -$ ограниченный симметрический оператор в H, $\|\delta_n A\| \leqslant \delta_n$, g_{δ_n} , $g_{\delta'_n} \in H$, $\|g_{\delta_n} - g\| \leqslant \delta_n$, $\|g_{\delta'_n} - g\| \leqslant \delta'_n$, то они единственны и, кроме того, как только δ_n , $\alpha_n \to 0$, $\delta_n = o(\alpha_n)$, то решение уравнения (2) сходится к нормальному решению уравнения (1).

Норма $||f_{\delta_n},_{\alpha_n} - f^*||$ оценивается также, как и в работе [3].

Примечание. Условие, чтобы уравнение (3) имело решения, нужно только для того, чтобы нормальные решения уравнений (1) и (2) совпадали.

Вильнюсский Государственный университет им. В. Капсукаса

Поступило в редакцию 2.III.1970

Литература

- М. М. Лаврентьев, О некоторых некорректных задачах математической физики, Новосибирск, Сиб. отд. АН СССР, 1962.
- 2. Н. И. Ахиезер и И. М. Глазман, Теория линейных операторов в гильбертовом пространстве, М., "Наука", 1966.
- 3. В. П. Кабайла, Некорректные задачи в гильбертовом пространстве для линейных уравнений с неограниченными линейными операторами, Liet. matem. rink., VII, № 3 (1967). 413—422.
- Б. С. Надъ, Продолжение операторов в гильбертовом пространстве с выходом из этого пространства, Сб. переводов "Математика", 9 : 6, 1965.
- 5. Ф. Рисс, Б. С. Надь, Лекции по функциональному анализу, ИЛ, М., 1954.
- 6. В. И. Смирнов, Курс высшей математики, М. Физматгиз, V, 1959.

NEKOREKTIŠKO UŽDAVINIO SU TIESINIU NEAPRĖŽTU SIMETRINIU OPERATORIUMI TIESINĖMS LYGTIMS HILBERTO ERDVĖJE SPRENDIMAS

B. Kuneikaitė

(Reziumė)

Straipsnyje nagrinėjamos lygtys

$$Af=g, (1)$$

$$(A_{\delta_n} + i\alpha_n I) f = g_{\delta_n}, \tag{2}$$

$$(A+i\alpha_n'I)f=g_{\delta_n'},\tag{3}$$

kuriose A — tiesinis simetrinis neaprėžtas operatorius Hilberto erdvėje H, $A_{\delta_n} = A + \delta_n A$, $\delta_n A$ — aprėžti simetriniai operatoriai erdvėje H, $||\delta_n A|| \leqslant \delta_n$, $g \in H$, $g_{\delta_n} \in H$, $||g - g_{\delta_n}|| \leqslant \delta_n$, $\delta_n \alpha_n > 0$. Irodoma, kad (2) lygties sprendiniai f_{δ_n} , α_n konverguoja į normalinį (1) lygties sprendinį f^* (t. y. į sprendinį su mažiausia norma), kai δ_n , $\alpha_n \to 0$ ir $\delta_n = o(\alpha_n)$ ir kai (2) ir (3) lygtys turi bent po vieną sprendinį.

NICHT KORREKTE AUFGABEN IN DEM HILBERTSCHEN RAUME FÜR LINEARE GLEI-CHUNGEN MIT NICHT BESCHRÄNKTEN LINEAREN OPERATOREN

B. Kuneikaitė

(Zusammenfassung)

In der Arbeit untersucht man die Gleichungen

$$Uf = g, (1)$$

$$(U_{\delta_n} + i\alpha_n I)f = g_{\delta_n} \tag{2}$$

und

$$(U+i\alpha'_n I)f = g_{\delta'_n} \tag{3}$$

wo U, U_{δ_n} lineare nicht beschränkte Operatoren in dem Hilbertschen Raum H sind, $\|U_{\delta_n} - U\| \le \delta_n$, g, $gs_n \in H$, $\|g - gs_n\| \| \le \delta_n$, δ_n , $\alpha_n > 0$. Der Autor beweist, daß die Lösung $f\delta_n$, α_n der Gleichung (2) zu der normalen Lösung (d. h. zu der Lösung mit der minimalen Norm) der Gleichung (1) konvergiert, wenn α_n , $\delta_n \to 0$, $\delta_n = o(\alpha_n)$ und die Gleichungen (2) und (3) eine oder mehrere Lösungen haben.