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SOME REMARKS ON THE RAREFACTION OF THE RENEWAL 
PROCESSESJ. Mogyorodi1. We start from the following rather obvious

Theorem 1. Let ξ1, ξ2, be a sequence of independent and identically distribu
ted random variables with finite mean-value μ. Let further vn be a sequence of positive 
integer-valued random variables, which for each n is independent of the sequence {ξi}. Assume that there exists a sequence ω (л) of positive numbers such that ω(w)→+ ∞ 
as h→+ ∞ and

<x) = G(x),

where G (x) is a distribution function. Then

where

lim P
n→+∞

∕ξ1+... + ζyn ∖ ω (л)
σ(i), 1∕μ>0,
E(x), ifμ = 0 ι-σ(i), l∕μ<0,

0, if x≤01, if x>0.Proof. We prove first that the random variablesζπ = ξι + .∙. + 4 (n=l, 2, ...)converge in probability to μ as n→+∞. In fact, by the total probability theorem the characteristic function of ζn is
j∏(e"S = Λ∕(z(2-p),

where f(t) is the characteristic function of ξi (ι=l, 2, ...). Now, by the supposition, v„ converges in probability to +oo as n→ + ∞ and so f (~ j n converges in probability to e,'μz. We^have further obvioiusly ∣∕ n ∣≤1. Thus, if we apply the Lebesgue's convergence theorem, it follows that ζn converges in probability to μ. Now let us consider the random variableτ =ζ π ς" ω («)
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By a theorem of H. Cramer [9] the distribution function of ηπ converges to 
G ), E (x) or 1 — G j according to the sign of μ.In this paper we shall be concerned with the following rarefaction models for renewal processes.Let τ0 ≡ 0 ≤ τ1 ≤ τ2 ≤ ... be a renewal process, i.e. let the non-negative random variables τi-τi~1 (ι = 1, 2, ...) be independent and identically distributed with common distribution function F(x). In the sequel we suppose that the mean-value μ of the random variables ξi = τi- τi-1 is finite and positive.We define the general rarefaction model as follows: let Z∖n∖ Z⅛n∖ (n=l, 2, ...)be a sequence of positive integer random variables which are independent for fixed 
n, and also independent of the renewal process τ0 ≡ 0 ≤ τi ≤ ... . Suppose further that Zįn) (z= 1, 2, ...) are for fixed n indentically distributed. Put⅛>≡0,

T$n) = Tzįn)+z(2n>+...+zĮn) ■ (*=1> 2, ...; n=l, 2, ...)The process τ⅛o≡O≤τf'o≤τ½'o≤ ... will be called a rarefaction of the original renewal process.It is obvious that the rarefaction is also a renewal process and the distribution function of the differenceszjn>+.. .+zįn)

τf">-τa= 2 ⅛ <1)
j=z^÷.. .÷z∣l∖+ιis the following:

∞
∑ P(Z^ = k)F^∖ (2)
∕c=lwhere Ft**>(x) denotes the /с-fold convolution of the distribution function F(x) with itself. Moreover, if the mean-value of the random variables Z}n) exists, i.e.
M(Z^) = Mn< +∞,then obviouslyΛf(τ^-τ1¾) = μΛfn∙ (f=l,2, ...) (3)On the basis of Theorem 1. we prove now for this model

Theorem 2. Suppose that there exists a sequence ω (и) of positive numbers such 
that ω (w)→+ oo as n→ + ∞ and

Aχp(⅛<*)=σω∙ ('=>∙ 2,...).

Then the limiting distribution of the random variables (4)
is also G (x). Moreover, every distribution, which is concentrated on the positive axis, 
is a possible limiting distribution for (4).
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Proof. By (1) the random variable т{л) — τ,¾ is a sum of a random number of 
independent and identically distributed random variables where the number of 
summands is Zjn).

New by Theorem 1. our first assertion follows.
Let G (x) be a distribution function such that the corresponding probability 

mass is concentrated on the positive axis. Put an infinite sequence zi of independent 
and identically distributed random variables with the distribution function G(x) 
and define

Z^ = [∕ιzi]. (f=l, 2, ...; n=l, 2, ...)
Then we have obviously

∕ ZW ∖lim P ( —— <x) = G(x).
n→+oo ∖ n ∕

If the random variables zi are independent of the original renewal process τp≡0≤ 
≤τ1≤τ2≤..., then the corresponding rarefied process τ⅛0 ≡ 0 ≤ τfn> ≤ τ⅛'0 ≤ ... 
is such that

∕ τ(n).τ(π) ∖
lim P ( ' -1 <x) = G(x). (i=l, 2, ...)

n→÷ o□ ' cj-ft z

This proves the second assertion.
Suppose now that M (Z^) = Mπ exists and Mn→+∞, further

∕ Z<z,) ∖

J≡∕(^⅛Γ<x)=gw'
where G (x) is a distribution function. This enables us to imaginate the following 
renewal process:

⅛0≡0 (5)

and for i= 1, 2, ... the random variables rįn) are determined by the relations 
τ(n)-τ(n)

⅜">-r,¾ = ‘ mπ1'1- (>∙=1, 2, ...) (6)

For fixed n these random variables are equally distributed and independent. 
Moreover by (3)

M(⅛'0-ζ¾) = μ. (z=l, 2, ...)
If we rarefy the original renewal process according to the random variables 
and then compress the new process τ⅛0 ≡ 0 ≤ τ⅞,° ≤ τ⅜0 ≤ ... such that in the new 
scale the mean-value between consecutive renewal points be μ, then we obtain the 
process defined by (5) and (6).

Theorem 2. expresses the fact that the asymptotic behaviour in distribution of 
the rarefied renewal process does not depend on the stochastic behaviour of the or i- 
ginal renewal process. It depends only on the rarefying random variables.

2. A more special rarefaction model for renewal processes is the following: 
let vW (i,n=↑,2, ...) be a double entry table of independent and identically distri
buted random variables, which are independent of the original renewal process, 
and which take on the values 1,2, ... . We suppose that their mean value M 
exists and M > 1.
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The rarefaction and compression will be made now step by step. In the first step we use the random variables vfυ (i= 1, 2, ...) and we define ⅛υ≡0, furtherτ∕ω = τvj∣)-LvU)-. ..+vQ)∙ (7=1,2, ...)Then, obviously, the random variablesτP>-τjL>1 (∕=1, 2, ...) are independent and identically distributed with common distribution function
2 P(y^ = k)FM(x).

k=lThe mathematical expectation of τξυ-τpi is μΛf, where M is the mean-value of vf">. The compression will be made in the following way: we put ⅛υ≡0 and define rjυ by the relations
τ(i)-τ(i),⅛l,-e=⅛^∙ (<∙=ι. 2,...)Thus, after rarefaction and compression we obtain in the first step the renewal process ⅛υ ≡ 0 ≤ ∕}υ ≤ ⅛υ ≤ ... which has the mean-value μ.The second step will be made now with the help of the random variables vp, but now we rarefy and compress the renewal process ⅛υ≤0≤r{υ≤4o≤.... We obtain a new process ⅛2>≡0≤rp≤⅛2j≤..., the mean-value of which is also μ.If the A>th step is already made, the (fc+ l)-th one is as follows: let τ⅛fc+υ≡0 and τ(*+n = ∕g+i)+v(⅛+i)+ vjfc+i)∙ (i=l, 2, ...)Then, as it is easily seen, the differencesτ(*+i)-τ(*+i) (z= 1, 2, ...)are independent and identically distributed non-negative random variables with mean-value μΛf. The (fc+l)-th step is finished with the definition of r^+,): let j(fc+D = 0 amj ιet ∕f(*+D (i= ij 2, ...) be determined by the relations

τ(fc+l)-τ(Λ + l)^+,>-e↑υ = -^----- kγl~1-∙ 0=1, 2, ...)This rarefaction and compression procedure generalizes that of Renyi [2] and of others [7], because these authors consider only the case when the random variables vp0 have geometric distribution.The renewal process ⅛o≡O≤⅛o≤⅛o≤... can be expressed by the original process τo≡0≤τ1 ≤τ2≤ ... in the following manner: let Zfυ = vjυ(i= 1, 2, ...) and define recursively the random variables Z}nj as follows:
v(n) vp+vpzP=∑ zf"~υ, z20 = ∑ Zi0*^0, ... (λ≥2). (8)

f=v<">+lThen, puttingτp* = τz(π)+z(n)+ +zj∏) 0 = 1, 2, .. .) (9)
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we see that ⅛o≡≡O and

(10)

Also it can be easily seen that ⅛2* (z= 1, 2, ...) is a sum of a random num
ber of the independent random variables ξj = τj∙- τj∙.1, where the number of the 
summands is Zfn), i.e.

,⅜ z'"i

4rt-e,1= ∑ ŲM". (11)
f-1

J= ∑ z∕π>+l
∕=1 1

Let∕(1y) denote the generating function of the random variables vf(n); i.e.

f (5)= ∑ ? (yin) = k)sk, (I s I ≤ 1; z, n = 1, 2, ...).
⅛=ι

Then the independence of for every z and ni and the construction of the random 
variables Zfn) implies that the generating function of Zf(n) is the и-fold iterate of 
the generating function f {s) with itself:

Λω-∕(∕(....(∕ω)∙..)j∙

Lemma. Let us suppose that 0<D2 (v},°) < + ∞ and let M (y∖ny) = Μ. Then

lim P (Z<n> <Mnx) = G (x), (12)

where G (x) is a distribution function with mean-value 1 and dispersion

D2(y^)∣(M2-M).

Moreover, G (x) is continuous. The class of the possible limit distributions coincides 
with the class of the possible limit distributions for Galton-Watson processes with 
mean-value M > 1.

Proof. It is obvious that M> 1. Let us consider that Galton —Watson process 
(cf. [10]. Theorem 8.1.), in which the distribution of the number of the first genera
tion is given by f (s). Then as it is well-known, the generating function of the number 
of the и-th generation is fn {s). It is also known that under our assumptions the num
ber of the и-th generation divided by Mn converges lwith probability 1 to a random 
variable W, the distribution function of which is continuous. Now, since the distri
bution function of Z^∣Mπ is the 'same as that of the и-th generation of the Gal
ton—Watson process divided by Mni we see that

lim P(Zin'<xMn)≈G(x)
n→+∞

exists, where G (x) is the distribution function of the random variable W. This pro
ves our assertion.
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were G {x} is defined in the Lemma. 
Proof. By (11)

<i∙(∏)* — -γ∙(w)⅛⅛n)-r¾ = -J J--1.

This lemma enables us to prove
Theorem 3. In the special rarefaction model (10) we have

lim P(tjw-r,¾ < μx) = G(x), (∕=1,2, ...)Λ→÷ X
z⅛ι z«

Σ ¾∕^∙∕='∑ z<">+ι∕-l '
So '=∣ z'*",

P(lf)-ft<μx)=P∏ ∑ ξ.∕Z,!"^(^)<μxj. (13)

' 7-'∑' ¾w+∣ '∕=1
Applying Theorem 1. and the Lemma our assertion immediately follows.

3. Now we turn to the case where we don't suppose that the original renewal 
process τ0 ≡ 0 ≤ τ1 ≤ τ2 ≤ ... has finite mean-value μ. In this case we give a necessary 
and sufficient condition to ensure that for a suitable choice of the positive cons
tants δπ (δn→0, as τz→+ ∞) the distribution function of the random variables 

8n(τ<">*-τJ"Jf) (i=l, 2,...)

converges to a limiting distribution as n→+∞. Here τ)"1 (ι, n=l, 2, ...)is defined 
by (9). Let us denote by F(x) the distribution function and by φ (s) the Laplace 
transform of the random variables τi-τi.1 (i= 1, 2, ...). We prove

Theorem 4. Let us consider the special rarefaction model defined by (8) and (9). 
Suppose that the positive integer random variables vįn) (i, n = l, 2,...) are independent 
and identically distributed with finite dispersion D2 (vp0), and independent also of the 
original process. In order that for a suitable choice of the norming constants δπ>0 
(λ = 1, 2, ...) the random variables

M⅛0*-⅛θΓ) (14) 

(ι = l, 2, ... fixed; w→+ ∞) have a limiting distribution, it is necessary and sufficient 
that one of the limits

lim Mn (l-φ(δn5)) = 0,
∏→+αo ' ∕

or 
lim Mn (1 - φ (δn 5)) = Csa

n→+ CO ' '

exist for s > 0. Here C is a positive constant and 0 < a ≤ 1.
Proof. Necessity. Let us consider for s>0 the Laplace transform φn (s) of 

(14). Then it can be easily seen, that

(15)
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where fn (z) denotes the и-th iterate of the generating function f (z) considered in 
Section 2. Now for 0<z≤l ∕(z) has an inverse u (z) and the inverse function of 
fn (z) is un (z) where un (z) denotes the «-th iterate of u (z). For 0<z≤ 1 the unique 
fixed point of u (z) is 1. Further u (z) satisfies all the conditions, which are necessa
ry to ensure that the limit

exist. (See for example Kuczma [1], definitions: page 19,20, assertion: page 137). 
χ (z) is the solution of the so called Schröder equation

z("W)=⅛zω∙
χ(z) is strictly monotonically increasing in (0, 1], twice differentiable, χ (l) = 0 
and χ'(l) = l.

Now from (15)

W∏ (<M*))=φ(V) (s>0)
and this implies

Λf"(a,(φ,(j))-1)=M" (φ(M)- 1)∙ (16)

Now by supposition φn (5) converges to the Laplace transform h (s) of the limi
ting distribution. Further

Thus by the continuity of χ (z) and h (5) it follows that

lim
n—>+ 00

(u, (φnM)-i) M"=χ(⅛(j)),

which by (16) means that

lim (φ(S.5)-l) M" = χ (*(J)), (,>0).

We must now distinguish two cases. In the first one we consider the possibility 
h (s) ≡ 1 for every s ≥ 0. In that case χ (h (s)j ≡ χ(l) = 0 such that

lim Mn (1 — φ (δn s)) = 0,

which proves the necessity of our first condition. In the other case there exists a num
ber s,0 > 0 such that h (s0) < 1.

As we see, χ is not positive and for increasing s it decreases. For s = ∙y0
we have thus

Jim (φ (8. ¾) -1) M∙=χ (ä (⅜)) < 0, 

because h (⅞)< 1.
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Confering the two last limit relations we see that

lim 
n→+∞ 1 -φ(δn50)

l~φ (8"j°⅛) _ x (⅛ω)

ι-φ(8n⅞) χ(Λ⅛))'

exists. On the other hand, the conditions Lemma 1. of Feller's book [8], page 335, 
are fulfilled for the function

U(s) = 1 -φ(j).

So
(— oo <α< + oo)

These limit relations show that

Z (*(∙s)) = Z (*(⅞)) sa = c*∙st,, 

where C* = χ (h (⅞)J⅛<0. (18) implies that

⅛(^ = Z^1(C*sβ).

(17)

(18)

(19)

Now h (5) as the Laplace transform of the limiting distribution function is mono
tonically decreasing and convex for s>0. So, by (18) the case α<0 is impossible.

By (19) the derivative of h (s) for 1y>0 is the following:
c*gjg~1 
χ' (h{s)}

Now if α>l then h, (0) = 0, which is not possible because in this case we 
would have Λ(s)≡l (s>0). This contradicts to the fact that A(s0)<l. So, 
O≤α≤l. Now the case α = 0 is also impossible. In fact, if α=0, then by (18)

A(5) = χ→(C*). (5≥0)
But C*<0 and χ~1 (z) is strictly monotonic.j So h (j) = χ~1 (C*)< 1. This contra
dicts to the fact that h (5) is a Laplace transform.

Denoting — C* by C we obtain that

lim Mn (l-φ(δπ5)) = Csα,
ZJ→÷OO ' I

(20)

where C > 0 is a constant and 0 < α ≤ 1. 
Sufficiency. If (20) is satisfied then 

φ(M)=i--^ (ι+°(i))∙

This means that
-⅛ (l + o<'>) , I 1 ∖ 

φ(8n^) = e m + o(λγ√'
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and so the Laplace transform of (14) is

φ+4-⅛,i"⅛).

Now by Lagrange's theorem

Л (» ω) [e

So, if the limit
Csa

l≡∕n(e m") (21)
n→+∞

exists, then there exists also the limit of the Laplace transform of (14). To prove 
the existence of (21) let us consider the Laplace transform of the random variable 
Zjn'>∣Mπ, where Zf0 is defined by (8). The value of this transform at the point 
Csa (s ≥ 0) is exactly

fΛe M")

By our suppositions the Lemma of Section 2. applies, and so

lim∕n(e m") = Λ(5)
n→+∞

exists and it is the Laplace transform of a distribution function. The argumenta
tion is similar in the case when φ (8πs)=1y+o ∙ We get in this case h(s)≡ 1.
This proves our theorem.

Gnedenko and [Freier in paper [5] proved that (20) is true if and only if the 
corresponding distribution function

F(x)=P(τi-τi-1<x) (∕=1, 2, . . .)
is of the following from: for 0 < α < 1

lim
x→+<x>

l-F(Arx)
1-F(x) ~

for every k>0, and for a = 1
*(l~fω) =0 

f (1 -Γ(z)) *

(22)

(23)

This enables us to give an other formulation of Theorem 4.
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Theorem 5. Under the hypotheses of Theorem 4. the Laplace transform of the 
possible limiting distributions is one of the following expressions:

Λ(y)≡l (5≥0)

A(s) = χ-1(C∏, (C>O)

where χ^1 (z) is the inverse of the solution of the Schroder's equation

and O< α ≤ 1.
In order that the Laplace transform of the limiting distribution be

h(s) = T^Cs) (C>0)

it is necessary and sufficient that the distribution function of the original renewal pro
cess satisfy the relation

lim ,(l-fw) =0
x→+∞

I (∣-F⅛)>
О

In this case the limiting distribution belongs to the class of those distributions which 
can be obtained as limiting distributions for Galton — Watson processes with ∕,(1) = M>
> 1. Let now O< a< 1. In order the Laplace transform of the limiting distribution be

(C>O),

it is necessary and sufficient that for every fixed

lim 
x→+∞

1-F(M
1-F(x) ~κ

be satisfied.
Finally, h{s)≡∖, if and only if the Laplace transform φ'(s) of F(x) is of the follo

wing form
l-φ(δ^) = √⅛)∙

Theorem 6. If we prescribe the value of δn to be then the limiting distribution 

of (14) exists if and only if the mean value μ of the distribution function F(x) is finite.
Proof. In fact, if μ is finite, then Theorem 3. shows that

1 
Mn

(24)

has a limiting distribution G (x). Conversely, if (2) has a limiting distribution, then 
by Theorem 4.

(0<α≤l, C>0).
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From the first relation we deduced that the Laplace transform of the limiting distri
bution is of the form

h(s)≡ 1.
This case is irrelevant. If the second limit relation is true then

_ sx+ ∞ m∏
lim f —------ dF{x) = Cs'~∖

λ->+∞ ■ —
0 Mn

By Fatouzs lemma it follows from this that
Sχ

÷°° ^t°° 1 ^Λ∕"
μ= f JdF(J}≤ lim —------- JF(x) = Cya"1, (j>0)

' n→+∞ ^ s
0 0

which proves our assertion.
4. Theorem 6. has an interesting consequence. In fact, we can raise the follo

wing problem: what are the renewal prosesses τo≡O≤τ1≤τ2≤ ... which remain 
invariant under the rarefaction and compression procedure expressed by the formu
las (8), (9) and (10). Under invariance with respect to this rerefaction and compres
sion we mean that after the и-th step the distribution function of the new 
process ⅛o≡O≤⅛o≤ ∙∙∙ (n=l, 2, ...) is the same as that before the rarefaction 
and compression.

Theorem 7. If 0 < Z>a (v}"j) < + ∞, (i, и = 1,2, ...), the sole invariant renewal 
processes with respect to the rarefaction and compression procedure, expressed by 
k8), (9) and (10), are those whose distribution function is where G(x) is de
fined by the Lemma and μ is an arbitrary finite positive number.

Proof. Let h {s} denote the Laplace transform of G (x}. Then the Laplace trans
form of the distribution function of 4υ-∕1¾ (∣ = 1, 2, ...) is f(h It is known

in the theory of the Galton—Watson processes that

≠(a (⅛))=*ω∙
Since, for finite μ > 0, h (μs) also satisfies this equation, it follows that the renewal 
processes with distribution function G are invariant.

Conversely, let F{x) be the distribution function of the invariant process τ0≡ 
≡ 0 ≤ τ1 ≤ τ2 ≤ ..., and let φ (s) denote its Laplace transform. Then the invariance 
of the process implies that

φW=∕(φ (⅛))∙
From this it follows that

4>M=∕.(φ(⅛f))∙ (n=l, 2, ...)

6. Lietuvos matematikos rinkinys, XI 2
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Let now ∕2→+ oo. Then

J⅛∕"(√⅛))
exists and equals φ (5). From this by Theorem 6. we deduce that F(x) has finite mean 
value μ. Theorem 3. now implies that F(x) = G (~),

Theorem 7 has been proved partially by the autnor in [3] and by other 
methods by T. Szantai [4]. His proof is complete.

Eotvos Lorand University, Received 18 September 1970
Budapest.
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НЕСКОЛЬКО ЗАМЕЧАНИЙ О РАЗРЕЖЕНИИ РЕКУРРЕНТНЫХ ПОТОКОВ

И. Модеруди

(Резюме)

Имеется рекуррентный поток событий τo≡O≤τ1≤τ2≤ ... с функцией распределения 
F(x) длин промежутков времени между последовательными событиями. Пусть √n) — по
следовательность независимых и одинаково распределенных случайных величин, прини
мающих положительные целые значения (i, л=1,2, ...), не зависящая от потока. Сделаем 
следующую операцию: возьмем те события из потока, индексы которых vp), v<1>, ... Полу
чаем новый поток

τ<O≡0≤τp> = τψ)≤τp) = τ√l)+v(i)≤. . .

Повторим указанную операцию п раз рекурсивно: во втором шагу операция делается над 
потоком τ(i)≤τ(,)≤τ<1)≤,..., но сейчас со случайными разреживающими величинами v<2> 
v<2), ,,,, а в л-том шагу над потоком τ<π-1)≡0≤τ('1-1)≤τ<"-1)≤... и со случайными ве
личинами vjn), v<«)........

Эта операция —обобщение операции A. Re’nyi так как у него распределены по 
закону Р (v(r,) = k) = q (1 — q)k~1, 0<q<l, £=1,2, ...
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Мы предполагаем, 4τoO<Z)8 (v("))=σ2 < + ∞. Исследуется предельное распределение разниц 8n(τf")-τf⅛)при фиксированном i, когда δπ→0 при π→+∞.Необходимое и достаточное условие для существования предельного распределения дается в теореме 4 и в другой формулировке в теореме 5.

KELIOS PASTABOS APIE REKURENTJNIŲ SRAUTŲ IŠRETINIMĄJ. Moderudi
(Reziumė)Darbe nagrinėjama atsitiktinių dydžių sekaτo = 0≤τ1≤τ2≤. .kuri nusako rekurentinį įvykių srautą. Tarkime, kad v<n> — nepriklausomų vienodai pasiskirsčiusių dydžių, įgyjančių reikšmes nepriklausomai nuo srauto dydžių, seka. Pažymimeτ},)=τ. τ∣n)-τ<n-0 + („>2, /=0> 1, ...)Esant sąlygai0 < Di (v9,)) = σa < + oo,4 teoremoje (kita formuluotė 5 teoremoje) gautos būtinos ir pakankamos skirtumųδ∏ (τ∣"> — тЗДkonvergavimo į ribinį dėsnį, kai δn→0, n→∞, sąlygos.Gautas rezultatas apibendrina A. Renyi teoremą, įrodytą specialiam dydžių vp,) atvejui.
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