
i

i

“LMD12_dif_Ambraz_Eismon” — 2012/12/11 — 15:29 — page 7 — #1
i

i

i

i

i

i

Lietuvos matematikos rinkinys ISSN 0132-2818

Proc. of the Lithuanian Mathematical Society, Ser. A www.mii.lt/LMR/

Vol. 53, 2012, 7–12

On a mathematical model of dissociative adsorption

and associative desorption∗

Algirdas Ambrazevičius, Alicija Eismontaitė

Faculty of Mathematics and Informatics, Vilnius University

Naugarduko 24, LT-03225 Vilnius

E-mail: algirdas.ambrazevicius@mif.vu.lt, alicija.eismontaite@gmail.com

Abstract. A mathematical model of dissociative adsorption and associative desorption
for diatomic molecules is considered. The model is described by a system of parabolic
and ordinary differential equations. The existence and uniqueness theorem of the classical
solution is proved.
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1 Introduction

According to Langmuir a unimolecular heterogeneous catalytic reaction can be mod-
eled by the reaction of the Michaelis–Menten type

A+K
κ
⇄
κ1

AK
κ2→ B,

where κ and κ1 are adsorption and desorption rate constants, κ2 is a constant of
adsorbate and catalyst compound AK reaction (conversion into product B) rate.
When the adsorbate diffusion is not taken into account, reactant diffuses to a sur-
face from a bounded domain and product desorption is fast or slow the existence
and uniqueness theorems of classical solutions are proved in [2] and [1], respec-
tively. In [6], these problems are solved numerically. The case where the reactant
diffuses in an unbounded domain, the adsorbent is planar, cylindrical or spheri-
cal, the adsorbate cannot diffuse along the catalyst surface and desorption of the
product is instantaneous is considered in [3]. Authors of this paper reduce the
problem into a nonlinear Voltera-type integral equation, which they solve numeri-
cally. In [7], taking into account the surface diffusion of the adsorbate and product
(before its slow desorption) unimolecular surface reactions are examined numeri-
cally.

∗ Authors are thankful to Prof. V. Skakauskas for formulation of the problem and fruitful dis-
cussions. This work has been supported by the Lithuanian Council of Science (Grant No MIP-
052/2012).
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2 Statement of the problem

In [4], a model of dissociative adsorption and associative desorption for a diatomic
reactant is presented. This process is modeled by formula

A2 + 2K
κ̃

⇄
κ̃1

2AK, (1)

where κ̃ and κ̃1 are adsorption and desorption rate constants. According to this
scheme a diatomic molecule of the reactant A2 interacts with two active sites of the
catalyst K forming adsorbate 2AK which during desorption releases two active sites.

Suppose, the reactant occupies a bounded domain Ω ⊂ R
p, p > 3, a = a(x, t)

is the concentration of reactant at the point x ∈ Ω at time t, S := ∂Ω is p − 1
dimension surface, S2 is a closed part of surface S of the same dimension (surface
of the adsorbent), S1 = S\S2. Let ρ = ρ(x) be a concentration of active sites of
a surface S at point x ∈ S, ρ ∈ C(S), ρ(x) > 0 for x ∈ S, ρ(x) = 0, for x ∈ S1.
Suppose, ρθ = ρ(x)θ(x, t) is a concentration of active sites of a surface occupied by
the adsorbate (then ρ(x)(1−θ(x, t)) is a concentration of free active sites of surface S)
at the point x ∈ S2 at time t. From (1) and the law of mass action we have Cauchy
problem for function θ

θ′ = aκρ(1− θ)2 − κ1ρθ
2, t ∈ (0, T ], θ|t=0 = θ0(x), x ∈ S2, (2)

where θ′ = dθ/dt, κ = 2κ̃, κ1 = 2κ̃1, 0 6 θ0(x) < 1, ∀x ∈ S2.
Note that this equation is nonlinear with respect to θ, while the corresponding

equation for θ used in [2, 1] is linear.
The diffusion of reactant A2 can be described by the problem























at − k∆a = 0, x ∈ Ω, t ∈ (0, T ),

k∂a/∂n = 0, x ∈ S1, t ∈ (0, T ),

k∂a/∂n+ κaρ2(1 − θ)2 = κ1ρ
2θ2, x ∈ S2, t ∈ (0, T ],

a|t=0 = a0(x), x ∈ Ω,

(3)

where at = ∂a/∂t, k = const > 0 is a diffusion coefficient, ∆a =
∑n

i=1 axixi
, ∂a/∂n is

the outward normal derivative to S, a0 = a0(x) is the initial concentration of reactant
at point x ∈ Ω.

Hence, mathematical model of dissociative adsorption and associative desorption
for diatomic molecules is a coupled system (2) and (3).

3 Main results

Suppose, that surface S and known functions a0, θ0 and ρ satisfy following conditions:

Assumption 1.

1. S ∈ C1+α, α ∈ (0, 1),

2. S = S1 ∪ S2, S2 is a closed part of surface S of n− 1 dimension.
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Assumption 2.

1. a0 ∈ C(Ω), a0(x) > 0, ∀x ∈ Ω,

2. θ0 ∈ C(S2), 0 6 θ0(x) < 1, ∀x ∈ S2,

3. ρ ∈ C(S2),

4. a0 is a continuously differentiable function in any neighbourhood of surface S.

Definition 1. We say that functions a and θ are classical solutions to (2), (3), if

1. a ∈ C2,1(Ω × (0, T ])∩C (Ω × [0, T ]),

2. θ ∈ C0,1(S2 × (0, T ])∩C (S2 × [0, T ]),

3. ∂a/∂n ∈ C (S1 × [0, T ])∪C (S2 × [0, T ]).

The main result of the present paper is the following theorem:

Theorem 1. Let surface S and known functions a0, θ0 and ρ satisfy conditions of

Assumptions 1 and 2. Then problem (2), (3) has a unique classical solution.

The proof of this theorem is based on the heat potential theory and a priori
estimates of solutions to problem (2), (3). We prove the following proposition.

Lemma 1. Let a ∈ C (S2 × [0, T ]), a(x, t) > 0, ∀(x, t) ∈ S2 × [0, T ], θ0 ∈ C (S2),
0 6 θ0(x) < 1, ∀x ∈ S2 and θ be a solution of Cauchy problem (2). Then

0 6 θ(x, t) < 1, ∀x ∈ S2, t ∈ [0, T ]. (4)

Proof. We multiply equation (2) by e
∫

t

0
κ1ρθ(x,s) ds and rewrite it as follows

(

θ(x, t)e
∫

t

0
κ1ρ(x)θ(x,s)ds

)′

= κρ(x)a(x, t)
(

1− θ(x, t)
)2
e
∫

t

0
κ1ρ(x)θ(x,s)ds.

By integrating latter equation from 0 to t, we get the integral equation

θ(x, t) = θ0(x)e
−

∫
t

0
κ1ρ(x)θ(x,s)ds

+ e−
∫

t

0
κ1ρ(x)θ(x,s)ds

∫ t

0

κρ(x)a(x, τ)
(

1− θ(x, τ)
)2
e
∫

τ

0
κ1ρ(x)θ(x,s)ds dτ.

Similarly, we multiply equation (2) by e
∫

t

0
κρ(x)a(x,s)(1−θ(x,s))ds and get the integral

equation

θ(x, t) = 1−
(

1− θ0(x)
)

e−
∫

t

0
κρ(x)a(x,s)(1−θ(x,s))ds

− e−
∫

t

0
κρ(x)a(x,s)(1−θ(x,s))ds

∫ t

0

κ1ρ(x)θ
2(x, s)e

∫
τ

0
κρ(x)a(x,s)(1−θ(x,s))ds dτ.

According to these integral equations and conditions of lemma, estimates (4) are true.
Lemma is proved.

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 7–12.
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Corollary 1. Let θ be a solution of Cauchy problem (2). Then

(

θ(x, t)

1− θ(x, t)

)2

6 max

{

max
x∈S2

(

θ0(x)

1− θ0(x)

)2

,
κ

κ1
m

}

, (5)

where m = max(x,t)∈S2×[0,T ] a(x, t).

Proof. Set

u =
θ

1− θ
.

Then Cauchy problem (2) can be rewritten:

u′ = κρa− κ1ρu
2, u|t=0 =

θ0(x)

1− θ0(x)
.

For any fixed value x ∈ S2 function u ∈ C[0, T ]. Hence, there exists a point t∗ ∈ [0, T ]
at which function u has its maximum value. If t∗ = 0, then

u(x, t) 6 u(x, 0) =
θ0(x)

1− θ0(x)
, ∀t ∈ [0, T ].

If t∗ > 0, then u′(x, t∗) > 0, and

u2(x, t) 6 u2(x, t∗) 6
κa(x, t)

κ1
6
κm

κ1
, ∀t ∈ [0, T ],

where m = maxx∈S2, t∈[0,T ] a(x, t). According to these inequalities, estimate (5) is
true.

Lemma 2. Let θ ∈ C (S2 × [0, T ]), 0 6 θ(x, t) < 1, ∀x ∈ S2, t ∈ [0, T ]. Moreover, let

a0 ∈ C (Ω), a0(x) > 0, ∀x ∈ Ω and a be a classical solution to problem (3). Then

0 6 a(x, t) 6 max

{

max
x∈Ω

a0(x), max
x∈S2, t∈[0,T ]

κ1
κ

(

θ(x, t)

1− θ(x, t)

)2}

, (6)

for all x ∈ Ω, t ∈ [0, T ].

Proof. Let the conditions of lemma be satisfied and a be a classical solution of prob-
lem (3). Then

at − k∆a = 0, x ∈ Ω, t ∈ (0, T ),

k∂a/∂n = 0, x ∈ S1, t ∈ [0, T ],

k∂a/∂n+ κρ2(1− θ)2a = κ1ρ
2θ2 > 0, x ∈ S2, t ∈ [0, T ],

a|t=0 = a0(x) > 0, x ∈ Ω.

By using the positivity lemma (see [5, Lemma 2.1, p. 54]), we get, that a(x, t) > 0
∀(x, t) ∈ Ω × [0, T ].
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Set

A = max

{

max
x∈Ω

a0(x), max
x∈S2, t∈[0,T ]

κ1
κ

(

θ(x, t)

1− θ(x, t)

)2}

and p = A− a. Then

pt − k∆p = 0, x ∈ Ω, t ∈ (0, T ),

k∂p/∂n = 0, x ∈ S1, t ∈ [0, T ],

k∂p/∂n+ κρ2(1− θ)2p = κρ2(1− θ)2
(

A−
κ1
κ

(

θ

1− θ

)2)

> 0,

p|t=0 = A− a0(x) > 0, x ∈ Ω.

According to positivity lemma, we can state, that p(x, t) > 0, ∀x ∈ Ω, t ∈ ×[0, T ].
Hence, a(x, t) 6 A and Lemma 2 is proved.

Remark 1. This lemma can also be proved using the same technique as in [2].

The proof of uniqueness of the classical solution is analogous to the proof of the
same proposition in [2] (with trivial changes).

Now we give the scheme for the proof of the existence of the classical solution.
Let Ω0 = Ω, if a0 = 0 in any neighbourhood of surface S, and Ω0 ⊃ Ω, if a0 is

continuously differentiable in any neighbourhood of surface S. In the last case, we
extend function a0 on Ω0 \Ω preserving the same smoothness.

Let

ai(x, t) =

∫ t

0

∫

S

Γ (x, t, ξ, τ)ϕi(ξ, τ) dSξ dτ +

∫

Ω0

Γ (x, t, ξ, 0)a0(ξ) dξ, i = 1, 2, . . .

be a solution to problem (3) with θ = θi−1 and θi a solution to problem (2) with
a = ai, where

Γ (x, t, y, τ) =
1

(4πk(t− τ))n/2
e−

|x−y|2

4k(t−τ) , t > τ,

is a fundamental solution to heat transfer equation (3) and ϕi is a solution to the
integral equation

1

2
ϕi(η, t) +

∫ t

0

∫

S

(

∂Γ (η, t, ξ, τ)

∂nη
+

1

k
σ(η, t, θi−1)Γ (η, t, ξ, τ)

)

ϕi(ξ, τ) dSξ dτ

=
1

k
ψ(η, t, θi−1)−

∫

Ω0

(

∂Γ (η, t, ξ, 0)

∂nη
+

1

k
σ(η, t, θi−1)Γ (η, t, ξ, 0)

)

a0(ξ) dξ

in cylinder S × [0, T ],

σ(x, t, θ) =

{

0, if (x, t) ∈ S1 × [0, T ],

κρ2(x)(1 − θ(x, t))2, if (x, t) ∈ S2 × [0, T ],

ψ = ψ(x, t, θ) =

{

0, if (x, t) ∈ S1 × [0, T ],

κ1ρ
2(x)θ2(x, t)g(x, θ(x, t)), if (x, t) ∈ S2 × [0, T ].

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 7–12.
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12 A. Ambrazevičius, A. Eismontaitė

Finally, we get sequences: {ai}
∞

i=1, {θi}
∞

i=1. Similarly as in [2], we prove that sequence
{ai}

∞

i=1 converges uniformly to its limit function a, a ∈ C2,1(Ω × (0, T ])∩C (Ω × [0, T ])
and this function is a classical solution to problem (3), sequence {θi}

∞

i=1 converges
uniformly to its limit function θ, θ ∈ C ([0, T ]× S2), θ

′ ∈ C ((0, T ]× S2) and θ is a
solution to Cauchy problem (2).
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REZIUMĖ

Apie vieną disociatyviosios adsorbcijos ir asociatyviosios desorbcijos matematinį
modelį
A. Ambrazevičius, A. Eismontaitė

Nagrinėjamas dviatomių molekulių disociatyviosios adsorbcijos ir asociatyviosios desorbcijos matem-
atinis modelis, aprašomas susieta parabolinių ir paprastųjų diferencialinių lygčių sistema. Įrodoma
klasikinio sprendinio egzistavimo ir vienaties teorema.

Raktiniai žodžiai: Parabolinės ir paprastosios diferencialinės lygtys, paviršinės reakcijos.
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