A joint limit theorem for zeta-functions of newforms

Gintautas Misevičius

Department of Mathematics and Informatics, Vilnius University
Naugarduko 24, LT-03225 Vilnius
E-mail: gintautas.misevicius@mif.vu.lt

Abstract. In the paper a joint limit theorem for zeta-functions of newforms on the complex plane is proved.

Keywords: limit theorem, zeta-function, newform.

Let $SL(2, \mathbb{Z})$ be the full modular group, and for $q \in \mathbb{Z}$, $\Gamma_0(q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in S(2\mathbb{Z}) : c \equiv 0 \pmod{q} \right\}$ be its Hecke subgroup.

Suppose that $F(z)$ is a holomorphic function on the upper half plane $\text{Im} z > 0$, for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(q)$ satisfies the functional equation

$$F\left(\frac{az + b}{cz + d}\right) = (cz + d)^k F(z), \quad k \in 2\mathbb{N},$$

and is holomorphic and vanishing at cusps. Then $F(z)$ is called a cusp form of weight k and level q, and has the following Fourier series expansion at infinity

$$F(z) = \sum_{m=1}^{\infty} c(m)e^{2\pi imz}.$$

Denote the space of all cusp forms of weight k and level q by $S_k(\Gamma_0(q))$. For every $d|q$, the element of the space $S_k(\Gamma_0(d))$ can be also considered as an element of the space $S_k(\Gamma_0(q))$. The form $F \in S_k(\Gamma_0(q))$ is called a newform if it is not a cusp form of level less than q, and if it is an eigenfunction of all Hecke operators. Then we have that $c(1) \neq 0$, therefore, we may assume that F is a normalized newform, i.e.,

$$F(z) = \sum_{m=1}^{\infty} c(m)e^{2\pi imz}, \quad c(1) = 1.$$

Let $s = \sigma + it$ be a complex variable. To a newform F, we attach the L-function $L(s, F)$ defined, for $\sigma > \frac{k+1}{2}$, by

$$L(s, F) = \sum_{m=1}^{\infty} \frac{c(m)}{m^s}.$$
A joint limit theorem for zeta-functions of newforms

Moreover, $L(s, F)$ has, for $\sigma > \frac{k+1}{2}$, the Euler product over primes

$$L(s, F) = \prod_{p|q} \left(1 - \frac{c(p)}{p^s}\right)^{-1} \prod_{p\nmid q} \left(1 - \frac{c(p)}{p^s} + \frac{1}{p^{2s+1-k}}\right)^{-1},$$

is analytically continuable to an entire function and satisfies the functional equation

$$q^{s/2}(2\pi)^{-s} \Gamma(s)L(s, F) = \varepsilon(-1)^{k/2}q^{(k-s)/2}(2\pi)^{s-k}\Gamma(k-s)L(k-s, F),$$

where $\varepsilon = \pm 1$.

A. Laurinčikas, K. Matsumoto and J. Steuding [1] obtained a limit theorem for the function $L(s, F)$ and applied it for the investigation of the universality of $L(s, F)$. Let $D = \{s \in \mathbb{C}: \frac{k}{2} < \sigma < \frac{k+1}{2}\}$, and $H(D)$ denote the space of analytic functions on D equipped with the topology of uniform convergence on compacta. Let $B(S)$ stand for the class of Borel sets of the space S. Define

$$\Omega = \prod_{p} \gamma_p,$$

where $\gamma_p = \{s \in \mathbb{C}: |s| = 1\}$ for all primes p. With the product topology and pointwise multiplication, the torus Ω is a compact topological Abelian group, therefore, on $(\Omega, B(\Omega))$ the probability Haar measure m_H can be defined. This gives the probability space $(\Omega, B(\Omega))$. Denote by $\omega(p)$ the projection of $\omega \in \Omega$ to the coordinate space γ_p, and define on the probability space $(\Omega, B(\Omega), m_H)$ the $H(D)$-valued random element $L(s, \omega, F)$ by

$$L(s, \omega, F) = \prod_{p|q} \left(1 - \frac{\omega(p)c(p)}{p^s}\right)^{-1} \prod_{p\nmid q} \left(1 - \frac{\omega(p)c(p)}{p^s} + \frac{\omega^2(p)}{p^{2s+1-k}}\right)^{-1}.$$

Let P_L be the distribution of $L(s, \omega, F)$, i.e.,

$$P_L(A) = m_H(\omega \in \Omega: L(s, \omega, F) \in A), \quad A \in B(H(D)).$$

Denote by $\text{meas}\{A\}$ the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then the following statement holds.

Theorem 1. (See [1].) The probability measure

$$\frac{1}{T} \text{meas} \{\tau \in [0,T]: L(s + i\tau, F) \in A\}, \quad A \in B(H(D)),$$

converges weakly to P_L as $T \to \infty$.

Our aim is a joint limit theorem for newforms. For $j = 1, \ldots, r$, let F_j be a new form of weight k_j and level q_j, and $L(s, F_j)$ be the corresponding L-function given, for $\sigma > \frac{k_j+1}{2}$, by

$$L(s, F_j) = \prod_{m=1}^{\infty} \frac{c_j(m)}{m^s} = \prod_{p|q_j} \left(1 - \frac{c_j(p)}{p^s}\right)^{-1} \prod_{p\nmid q_j} \left(1 - \frac{c_j(p)}{p^s} + \frac{1}{p^{2s+1-k_j}}\right)^{-1},$$

where
\[
F_j(z) = \sum_{m=1}^{\infty} c_j(m)e^{2\pi imz}, \quad c_j(1) = 1.
\]

On the probability space \((\Omega, \mathcal{B}(\Omega), m_H)\), define \(C^r\)-valued random element \(L(\sigma, \omega, F)\) by the formula
\[
L(\sigma, \omega, F) = (L(\sigma_1, \omega, F_1), \ldots, L(\sigma_r, \omega, F_r)),
\]
where
\[
L(\sigma_j, \omega, F_j) = \prod_{p|\sigma_j} \left(1 - \frac{\omega(p)c_j(p)}{p^{\sigma_j}} \right)^{-1} \prod_{p \nmid \sigma_j} \left(1 - \frac{\omega(p)c_j(p)}{p^{\sigma_j}} + \frac{\omega^2(p)}{p^{2\sigma_j+k_j}} \right)^{-1},
\]
and \(\sigma = (\sigma_1, \ldots, \sigma_r), F = (F_1, \ldots, F_r)\). Denote by \(P_L\) the distribution of \(L(\sigma, \omega, F)\).

Then we have the following theorem.

Theorem 2. Suppose that \(\sigma_j > \frac{k_j}{2}, j = 1, \ldots, r\). Then the probability measure
\[
P_T(A) \overset{\text{def}}{=} \frac{1}{T} \text{meas} \{ t \in [0, T]; (L(\sigma_1 + it, F_1), \ldots, L(\sigma_r + it, F_r)) \in A \},
\]
converges weakly to \(P_L\) as \(T \to \infty\).

A generalization of Theorem 2 to the space of analytic functions is also possible.

We will give only a sketch of the proof of Theorem 2. Let \(\mathbb{P}\) denote the set of all prime numbers.

Lemma 1. The probability measure
\[
Q_T(A) \overset{\text{def}}{=} \frac{1}{T} \text{meas} \{ t \in [0, T]; (p^{-it}; p \in \mathbb{P}) \in A \}, \quad A \in \mathcal{B}(\Omega),
\]
converges weakly to the Haar measure \(m_H\) on \((\Omega, \mathcal{B}(\Omega))\) as \(T \to \infty\).

Proof of the lemma is given in [1].

Now let \(\sigma_1 > \frac{1}{2}\) be fixed, and, for \(m, n \in \mathbb{N}\),
\[
v_n(m) = \exp \left\{ - \left(\frac{m}{n} \right)^{\sigma_1} \right\}.
\]

For \(j = 1, \ldots, r\) define
\[
L_n(s, F_j) = \sum_{m=1}^{\infty} \frac{c_j(m)v_n(m)}{m^s},
\]
and, for \(\hat{\omega} \in \Omega\),
\[
L_n(s, \hat{\omega}, F_j) = \sum_{m=1}^{\infty} \frac{c_j(m)\hat{\omega}(m)v_n(m)}{m^s}.
\]

Then the series for \(L_n(s, F_j)\) and \(L_n(s, \omega, F_j)\) converge absolutely for \(\sigma > \frac{k_j}{2}\).
A joint limit theorem for zeta-functions of newforms

Lemma 2. Suppose that \(\sigma_j > \frac{b_j}{2} \), \(j = 1, \ldots, r \). Then the probability measures

\[
P_{T,n}(A) \overset{\text{def}}{=} \frac{1}{T} \meas \{ t \in [0,T]: (L_n(\sigma_1 + it, F_1), \ldots, L_n(\sigma_r + it, F_r)) \in A \},
\]

\(A \in \mathcal{B}(\mathbb{C}^r) \),

and

\[
\tilde{P}_{T,n}(A) \overset{\text{def}}{=} \frac{1}{T} \meas \{ t \in [0,T]: (L_n(\sigma_1 + it, \tilde{\omega}, F_1), \ldots, L_n(\sigma_r + it, \tilde{\omega}, F_r)) \in A \},
\]

\(A \in \mathcal{B}(\mathbb{C}^r) \),

both converge weakly to the same probability measure on \((\mathbb{C}^r, \mathcal{B}(\mathbb{C}^r)) \) as \(T \to \infty \).

Proof. The lemma easily follows Lemma 1, continuity of mappings \(\tilde{h}_n : \Omega \to \mathbb{C}^r \) and \(h_n : \Omega \to \mathbb{C}^r \) given by the formulae

\[
h_n(\omega) = (L_n(\sigma_1, \omega, F_1), \ldots, L_n(\sigma_r, \omega, F_r))
\]

and

\[
\tilde{h}_n(\omega) = (L_n(\sigma_1, \tilde{\omega}, F_1), \ldots, L_n(\sigma_r, \tilde{\omega}, F_r)),
\]

respectively, and of Theorem 5.1 from [2]. The limit measure in both the cases is of the form \(m_H h_n^{-1} \). This follows from the invariance of the Haar measure \(m_H \).

To pass from the functions \(L_n(s, F_j) \) to \(L(s, F_j) \), the following approximation is used. Let, for \(\tilde{z_1} = (z_{11}, \ldots, z_{1r}) \) and \(\tilde{z_2} = (z_{21}, \ldots, z_{2r}) \),

\[
\varrho(\tilde{z}_1, \tilde{z}_2) = \left(\sum_{k=1}^{r} |z_{1k} - z_{2k}|^2 \right)^{1/2},
\]

\[
L_n(\sigma + it, F_j) = (L_n(\sigma_1 + it, F_1), \ldots, L_n(\sigma_r + it, F_r)),
\]

\[
L(\sigma + it, F_j) = (L(\sigma_1 + it, F_1), \ldots, L(\sigma_r + it, F_r)),
\]

Lemma 3. Suppose that \(\sigma_j > \frac{b_j}{2} \), \(j = 1, \ldots, r \). Then

\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \varrho(L_n(\sigma + it, F), L(\sigma + it, F)) \, dt = 0
\]

and, for almost all \(\omega \in \Omega \),

\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \varrho(L_n(\sigma + it, \omega, F), L(\sigma + it, \omega, F)) \, dt = 0.
\]

Proof of lemma follows from the corresponding one-dimensional statements, and from the definition of the metric \(\varrho \).

Define one more probability measure

\[
\tilde{P}_T(A) \overset{\text{def}}{=} \frac{1}{T} \meas \{ t \in [0,T]: L(\sigma + it, \omega, F) \in A \}, \quad A \in \mathcal{B}(\mathbb{C}^r).
\]
Lemma 4. Suppose that $\sigma_j > \frac{\gamma_j}{2}$, $j = 1, \ldots, r$. Then the measures P_T and \tilde{P}_T both converge weakly to the same probability measure P on $(C^r, B(C^r))$ as $T \to \infty$.

Proof. Let θ be a random variable defined in a certain probability space $\hat{\Omega}, F, \mu$ and uniformly distributed on $[0, 1]$. Define

$$X_{T,n}(\sigma) = L_n(\sigma + i\theta T, F).$$

Then, by Lemma 4,

$$X_{T,n} \overset{D}{\underset{n \to \infty}{\longrightarrow}} X_n,$$

where X_n is the random element with the distribution P_n, and P_n is the limit measure in Lemma 4. After this, it is proved that the family of probability measures $\{P_n: n \in N\}$ is tight. Hence, by the Prokhorov theorem, it is relatively compact. Thus, there exists a sequence $\{P_{n_k}\} \subset \{P_n\}$ such that P_{n_k} converges weakly to a certain probability measure P. In other words,

$$X_{n_k} \overset{D}{\underset{k \to \infty}{\longrightarrow}} P.$$

Define

$$X_T(\sigma) = L(\sigma + i\theta T, F).$$

Then, in view of Lemma 5, for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \limsup_{T \to \infty} \mu\left(\phi(X_T(\sigma), X_{T,n}(\sigma)) \geq \varepsilon\right)$$

$$\leq \lim_{n \to \infty} \limsup_{T \to \infty} \int_0^T \phi(L(\sigma + it, F), L_n(\sigma + it, F)) dt = 0.$$

This, (1), (2) and Theorem 4.2 of [2] show that

$$X_T(\sigma) \overset{D}{\underset{T \to \infty}{\longrightarrow}} P.$$

Thus, P_T converges weakly to P as $T \to \infty$.

Repeating the above arguments for the random elements

$$X_{T,n}(\sigma) = L_n(\sigma + iT, \omega, F)$$

and

$$X_T(\sigma) = L(\sigma + i\theta T, \omega, F),$$

we obtain that \tilde{P}_T also converges weakly to P as $T \to \infty$.

Proof of Theorem 2. In view of Lemma 4, it suffices to prove that P coincides with P_L. For this, elements of the ergodic theory is applied.
A joint limit theorem for zeta-functions of newforms

References

REZIUMĖ

Jungtinė ribinė teorema naujų formų dzeta funkcijoms

G. Misevičius

Straipsnyje įrodyta jungtinė ribinė teorema kompleksinėje plokštumoje naujų formų dzeta funkcijoms.

Raktiniai žodžiai: dzeta funkcija, naujos formos, ribinė teorema.