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Abstract. We consider the stability of a finite difference scheme with two weight param-
eters for a hyperbolic equation with nonlocal integral boundary conditions. We obtain sta-
bility region in the complex plane by investigating the characteristic equation of a difference
scheme using the root criterion.
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Introduction

There often arise problems described by equations of mathematical physics with rather
complicated nonclassical conditions modeling natural, physical, chemical and other
processes. Nonlocal conditions occur in processes related to diffusion processes, for
instance, electrolytic refining of non-ferrous metals [4], deformation of metals under
high strain rates, the phenomena of Ohmic heating (see [2] and references therein),
superconductivity [1], flow of fluids through fissured rocks [7], etc.

In the present paper, we investigate the stability region of the finite difference
scheme (FDS) with two parameters (see [6]) for the hyperbolic equation with two
integral nonlocal boundary conditions (NBC). By using the root criterion (see [3]) we
obtain regions on a complex plane, where FDS is stable. Samarskii, using the energy
inequality technique, obtained the stability conditions for the classical hyperbolic
problem in work [6]. We have generalized the results presented in [5], by using more
general scheme. We note, that, unlike the case of FDS with one weight parameter,
the eigenvalues of the investigated problem could be complex.

1 A finite difference scheme

Consider the wave equation

∂2u

∂t2
− c2

∂2u

∂x2
= f(x, t), (x, t) ∈ Ω × (0, T ], (1)
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where Ω = (0, L), with the classical initial conditions

u|t=0 = φ(x), x ∈ Ω := [0, L], (2)

∂u

∂t

∣∣∣∣
t=0

= ψ(x), x ∈ Ω (3)

and integral NBC

u(0, t) = γ0

∫ L

0

u(x, t) dx + vl(t),

u(1, t) = γ1

∫ L

0

u(x, t) dx+ vr(t), t ∈ [0, T ], (4)

where f(x, t), φ(x), ψ(x), vl(t), and vr(t) are given functions, and γ0 and γ1 are given
real parameters. We are interested in sufficiently smooth solutions of the nonlocal
problem (1)–(4). This paper is the generalization of the article [5], therefore in both
works we use the same notations. We can investigate problem (1)–(4) in the interval
[0, 1] instead of [0, L] using transformation x = Lx′. Then new c′ = c/L. Further we
consider c′ = 1, without losing of generality, for simplicity.

Now we state a difference analogue of the differential problem (1)–(4). We denote

U (σ) = σ1Ǔ +(1− σ1 − σ2)U + σ2Û , σ1, σ2 ∈ R. We define a FDS approximating the
original differential equation (1) (see [6]):

∂
2

tU − δ2xU
(σ) = F, (xi, tj) ∈ ωh × ωτ . (5)

The initial conditions are approximated as follows:

U0 = Φ, xi ∈ ωh, (6)

∂tU
1 = Ψ, xi ∈ ωh. (7)

We rewrite the boundary conditions using the defined in article [5] inner product:

U0 = γ0[1, U ] + Vl, tj ∈ ω̃τ \
{
t1
}
, (8)

UN = γ1[1, U ] + Vr, tj ∈ ω̃τ \
{
t1
}
. (9)

In the problem (5)–(9) we approximate functions f , φ, ψ, vl and vr by grid functions
F , Φ, Ψ , Vl, and Vr. In the case σ1 = σ2 = σ stability of FDS (5)–(9) is equal to the
one, investigated in [5].

Equations (8)–(9) is a system of two linear equations for unknowns U0 and UN .
We express these unknowns via inner points Ui, i = 1, N − 1, and obtain

U0 = γ̃0(1, U) + Ṽl, UN = γ̃1(1, U) + Ṽr, (10)

where γ̃0 = γ0d
−1, γ̃1 = γ1d

−1, d = 1−hγ/2 > 0; Ṽl = (Vl+hc)d
−1, Ṽr = (Vr−hc)d

−1,
c = (γ0Vr − γ1Vl)/2. By substituting expressions (11) and (10) into Eq. (5) for i = 1
and i = N − 1 we rewrite it in the form

AÛ+BU+CǓ = τ2F, (11)

A = I+ τ2σ1Λ, B = −2I+ τ2(1− σ1 − σ2)Λ, C = I+ τ2σ2Λ, (12)

Liet. matem. rink. Proc. LMS, Ser. A, 55, 2014, 22–27.
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where A, B, C, and

Λ =
1

h2




2− γ̃0h −1− γ̃0h −γ̃0h . . . −γ̃0h −γ̃0h −γ̃0h
−1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 −1 0
0 0 0 . . . −1 2 −1

−γ̃1h −γ̃1h −γ̃1h . . . −γ̃1h −1− γ̃1h 2− γ̃1h




(13)

are (N − 1)× (N − 1) matrices, I is the identity matrix, 0 is a zero matrix. Finally,

F =
(
F̃1, . . . , F̃N−1

)⊺
, where F̃i = Fi, i = 2, N − 2 and F̃i = F̃i(Fi, Vl, Vr), i =

1, N − 1. The spectrum of matrix Λ is fully investigated in paper [5, §3]. According
to [5, Lemma 1 and Remark 2] under certain conditions (γ < 2) spectrum is real and
is in the interval (0, 4/h2].

We represent the three-layer scheme (11) as an equivalent two-layer scheme (e.g.,
see [5])

Ŵ = SW +G, (14)

using notations

W =

(
U

Ǔ

)
, S =

(
−A

−1
B −A

−1
C

I 0

)
, G =

(
τ2A−1

F

0

)
. (15)

According to [5] eigenvalues µ of the matrix S could be found as the roots of the
quadratic equation

µ2λk(A) + µλk(B) + λk(C) = 0, k = 1, N − 1, (16)

where λk are the eigenvalues of the matrix Λ.
The aim of the following section is to investigate the spectrum of the weighted

FDS independently of boundary conditions.

2 FDS stability regions

In general, under various boundary conditions, eigenvalues of operator Λ could be
complex numbers. A polynomial satisfies the root condition if all the roots of that
polynomial are in the closed unit disc of complex plane and roots of magnitude 1 are
simple [3]. If polynomial p(µ, λ) := a(λ)µ2 + b(λ)µ+ c(λ) satisfies the root condition,
then we say that λ is in stability region defined by equation p(µ, λ) = 0. Denoting
z := τ2λ and substituting it into (16) we have:

P (µ, z) := (1 + zσ1)µ
2 −

(
2− (1− σ1 − σ2)z

)
µ+ (1 + zσ2) = 0, (17)

or expressing z:

z(µ) = −
(µ− 1)2

σ1µ2 + (1 − σ1 − σ2)µ+ σ2
. (18)

Substituting µ = eıϕ, ϕ ∈ (−π,+π], into Eq. (17) we obtain the formula for the
boundary ∂S of the stability region S:
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(a) σ1 = 0.1k, σ2 = 0, (b) σ1 = 0.46 + 0.02k, σ2 = 0, (c) σ1 = 0.5 + 0.1k, σ2 = 0,
k = 1, 4 k = 1, 3 k = 1, 4

(d) σ1 + σ2 = 0.25, σ1 = 0.07k, (e) σ1 + σ2 = 0.5, (f) σ1 + σ2 = 1, σ1 = 0.1k,
k = 1, 5 σ1 = 0.48− 0.05k, k = 1, 3 k = 1, 5

Fig. 1. Stability regions for different values of weights σ1 and σ2.

z = z∂(ϕ) =
2(1− cosϕ)(1 − (σ1 + σ2)(1 − cosϕ)− (σ1 − σ2)ı sinϕ)

(1− (σ1 + σ2)(1 − cosϕ))2 + (σ1 − σ2)2 sin
2 ϕ

. (19)

One can see that Re z∂ is even function and Im z∂ is odd function. So, the stability
region is symmetric to the real axis (see Fig. 1).

The discriminant of the polynomial P (µ, z) is

D(P (µ, z)) =
(
(σ1 − σ2)

2 − 2(σ1 + σ2) + 1
)
z2 − 4z. (20)

We have two double root points on the real axis:

z0 = 0, z1 =
4

1− 2(σ1 + σ2) + (σ1 − σ2)2
(21)

and corresponding real values of µ:

µ0 = 1, µ1 =
σ1 − σ2 − 1

σ1 − σ2 + 1
(22)

and z′(1) = z′(µ1) = 0. These two points are the branch points of the multi-valued
function µ(z). Point z0 = 0 is on the boundary ∂S and corresponds to double root
µ = µ0 = 1 (ϕ = 0). So, this point does not belong to the stability region S.

By substituting µ = −1 (ϕ = π) into (17), we find the second point of the boundary
∂S on the real axis (see Fig. 2)

z−1 =
4

1− 2(σ1 + σ2)
, σ1 + σ2 6=

1

2
. (23)

In the case σ1 + σ2 = 1/2 we have z−1 = ∞.

Liet. matem. rink. Proc. LMS, Ser. A, 55, 2014, 22–27.
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Fig. 2. Function z−1 = z−1(σ1 + σ2). Fig. 3. Function µ2 = µ2(σ1 − σ2).

If σ1 = σ2 = σ then z−1 = z1 = 4/(1− 4σ). The stability region consists only of
the boundary ∂S points and all these points are real. The boundary ∂S degenerates
into interval [0, z−1], or, more precisely, double contour [z−1, 0]∪ [0, z−1]. We have the
same z for ±ϕ because z∂(ϕ) is even function, and endpoints of the interval [0, z−1]
are the branch points and the roots of the polynomial (17) are µ = e±ıϕ, 0 < |ϕ| < π.
If σ < 1/4, then stability region is (0, z−1) ⊂ (0,+∞); if σ = 1/4, then stability
region is (0,+∞), and if σ > 1/4 then stability region is (−∞, z−1) ∪ (0,+∞) (see
Fig. 2).

If σ1 6= σ2 and ϕ 6= 0, π, then Im z∂(ϕ) 6= 0, i.e., z′(eıϕ) 6= 0. So, the boundary
∂S is a non-self-intersecting continuous curve (and smooth curve except origin point).
We have the root µ = −1 if z = z−1 For σ1 + σ2 6= 1/2. The boundary ∂S divides
the complex plane into an “interior” region bounded by the curve and an “exterior”
region. For boundary ∂S we have the same (anticlockwise) direction as for µ =
eıϕ, ϕ ∈ (−π,+π]. For the polynomial P (µ, z) the coefficient 1 + z−1σ1 = (1 +
2(σ1 − σ2))/(1 − 2(σ1 + σ2)) = 0 if and only if σ1 − σ2 = −1/2. So, in the case
σ1 − σ2 6= −1/2 we can find the second root µ2 of Eq. (17) from Viète formula
−µ2 = µ1µ2 = (1 + z−1σ2)/(1 + z−1σ1):

µ2 =
2(σ1 − σ2)− 1

2(σ1 − σ2) + 1
, σ1 − σ2 6= −

1

2
. (24)

If σ1 < σ2, then |µ2| > 1 (see Fig. 3) and the root condition is not satisfied. For the
special case σ1−σ2 = −1/2 and σ1+σ2 6= 1/2 (then σ1 6= 0, σ2 6= 1/2) the polynomial
P (µ, z) is linear and we have one root µ = −1. If z → z−1 = 2/(1 − 2σ2) = −1/σ1
then µ2 → ∞. Therefore, the stability condition is satisfied in the point z−1 only. If
σ1 > σ2, then |µ2| < 1. Since z′(−1) = 4(σ1 − σ2)/(2(σ1 + σ2)− 1)2 > 0 we get that
stability region is inside the boundary ∂S for σ1 + σ2 < 1/2, and the stability region
is outside the boundary ∂S for σ1 + σ2 > 1/2. The boundary points z ∈ ∂S r {0}
belongs to stability region, too (see Fig. 1).

In the case σ1+σ2 = 1/2 (and σ1 6= σ2) the point z = z−1 = ∞ and boundary ∂S
divides complex plane into two unbounded parts (see Fig. 1(b), (e)). ∂S has asymptote
Re z = za = 1/(σ1 − σ2)

2 = 4/(4σ1 − 1)2. Additionally, z1 = 1/(σ1 − σ2)
2 > 0 and

µ1(σ1 − σ2) = µ2

(
(σ1 − σ2)/2

)
. Then we get that |µ1| < 1 if and only if σ1 > σ2.
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So, the stability region is in the right-hand-side of the complex plane for σ1 > σ2. If
σ1 < σ2 then for the second order polynomial (17) the stability region is empty.

Finally, if z∞ = −1/σ1, σ1 6= 0 the polynomial (17) is linear and has one root µ =
(σ1−σ2)/(σ1−σ2+1). This point z∞ is unique stability point for −1/2 6 σ1−σ2 < 0
and additional stability point for σ1 − σ2 > 0.

3 Conclusions and results

FDS with two weight parameters has a stability region if σ1 > σ2. If the spectrum is
in the interval (0,∞), then the second stability condition is σ1 + σ2 > 1/2 (the same
stability condition was obtained in [6]).

The stability region depends qualitatively on the parameter σ1 + σ2. While σ1 +
σ2 < 1/2 the stability region is bounded, otherwise – unbounded.

If a spectrum has complex eigenvalues, under the condition σ1 = σ2 = σ, then
FDS is unstable.
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REZIUMĖ

Baigtinių skirtumų schemos su dviem svoriais hiperbolinei lygčiai
su nelokaliosiomis sąlygomis stabilumas
Jurij Novickij, Artūras Štikonas

Darbe nagrinėjamas baigtinių skirtumų schemos su dviem svoriais hiperbolinei lygčiai su nelokalio-
siomis integralinėmis kraštinėmis sąlygomis stabilumas. Remiantis šaknu kriterijumi ištirta skirtu-
minės schemos charakteristinė lygtis ir gauta stabilumo sritis kompleksinėje plokštumoje.

Raktiniai žodžiai: integralinės sąlygos, hiperbolinė lygtis, schema su svoriais, stabilumo sritis, šaknų
kriterijus.
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