Multiplicative dependence of cubic algebraic numbers

Paulius Drungilas, Linas Klimavičius

Faculty of Mathematics and Informatics, Vilnius University
Naugarduko 4, LT-03225, Vilnius, Lithuania
E-mail: pdrungilas@gmail.com, linasklim@gmail.com

Abstract

We provide an infinite family of cubic algebraic integers α such that the set $\{\alpha+x \mid x \in \mathbb{Z}\}$ is multiplicatively dependent.

Keywords: algebraic numbers, multiplicative dependence.

Introduction and results

Throughout we denote by \mathbb{Z}, \mathbb{Q} and \mathbb{C} the sets of integers, rational numbers and complex numbers respectively. Let α be an algebraic number and let $M \subset \mathbb{Q}$. We say that a complex number α is M-dependent if there are two distinct collections $x_{1}, \ldots, x_{n} \in M$ and $y_{1}, \ldots, y_{m} \in M$ such that

$$
\begin{equation*}
\left(\alpha+x_{1}\right) \cdots\left(\alpha+x_{n}\right)=\left(\alpha+y_{1}\right) \cdots\left(\alpha+y_{m}\right) \tag{1}
\end{equation*}
$$

Here, $n \in \mathbb{N}$ and $m \in \mathbb{N} \cup\{0\}$, where the right-hand side is assumed to be 1 for $m=0$. Assume that α is M-dependent. We call its length of multiplicative dependence (and denote it by $\ell(\alpha, M))$ the smallest $n+m$ for which there are $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in M$ satisfying (1).

Denote by \mathbb{Z}_{t} the set of integers greater than or equal to t. \mathbb{Z}_{0}-dependence of algebraic numbers is important in the theory of Hurwitz zeta-function $\zeta(\alpha, s)=$ $\sum_{j=0}^{\infty}(j+\alpha)^{-s}$ (see, e. g., [6]) as well as in the in the investigation of zero-distribution and the universality property of Lerch zeta-function (see, e.g., $[4,5]$).

The first named author and Dubickas [1] raised the following question.
Question. Is every algebraic number \mathbb{Z}_{0}-dependent?
It was proved in [1] that every quadratic algebraic number α is \mathbb{Z}_{t}-dependent and $\ell\left(\alpha, \mathbb{Z}_{t}\right) \leqslant 8$ for any $t \in \mathbb{Z}$. On the other hand the equality $\alpha(\alpha+x)=\alpha+y$ shows that every quadratic algebraic integer is \mathbb{Z}-dependent and $\ell(\alpha, \mathbb{Z}) \leqslant 3$. Moreover, it was noted in [1] that every quadratic algebraic integer is \mathbb{Z}_{t}-dependent and $\ell\left(\alpha, \mathbb{Z}_{t}\right) \leqslant 5$ for every $t \in \mathbb{Z}$.

For quadratic algebraic numbers, which are not algebraic integers, the inequality $\ell\left(\alpha, \mathbb{Z}_{t}\right) \leqslant 8$ is not sharp. Indeed, it was stated in [1] that if α is a root of $2 x^{2}+3$ and $\ell\left(\alpha, \mathbb{Z}_{1}\right)=6$ then there exist two distinct collections $x_{1}, x_{2}, x_{3} \in \mathbb{Z}_{1}$ and $y_{1}, y_{2}, y_{3} \in \mathbb{Z}_{1}$ such that

$$
\left(\alpha+x_{1}\right)\left(\alpha+x_{2}\right)\left(\alpha+x_{3}\right)=\left(\alpha+y_{1}\right)\left(\alpha+y_{2}\right)\left(\alpha+y_{3}\right)
$$

and at least one of x_{i}, y_{i} is >1000. However, we have found that

$$
(\alpha+3)(\alpha+4)(\alpha+46)=(\alpha+2)(\alpha+11)(\alpha+24)
$$

so that $\ell\left(\alpha, \mathbb{Z}_{1}\right)=6$.
Let α be an algebraic number whose minimal polynomial (the monic polynomial in $\mathbb{Q}[x]$ of smallest degree whose root is α) is

$$
P(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0} \in \mathbb{Q}[x] .
$$

Let $M \subset \mathbb{Q}$. Then M-dependence of α implies multiplicative dependence of the set $\{P(-m) \mid m \in M\}$ of values of the minimal polynomial of α. Indeed, let $K:=\mathbb{Q}(\alpha)$ be the number field generated by α and let $\mathrm{Nm}_{K / \mathbb{Q}}: K \rightarrow \mathbb{Q}$ be the norm in the extension K / \mathbb{Q} (see, e.g., [3] or [7]). Assume that α is M-dependent. Since the norm map $\mathrm{Nm}_{K / \mathbb{Q}}$ is multiplicative, (1) implies

$$
\operatorname{Nm}_{K / \mathbb{Q}}\left(\alpha+x_{1}\right) \cdots \operatorname{Nm}_{K / \mathbb{Q}}\left(\alpha+x_{n}\right)=\operatorname{Nm}_{K / \mathbb{Q}}\left(\alpha+y_{1}\right) \cdots \operatorname{Nm}_{K / \mathbb{Q}}\left(\alpha+y_{m}\right) .
$$

In view of $\operatorname{Nm}_{K / \mathbb{Q}}(\alpha+x)=(-1)^{d} P(-x)$, which is valid for all $x \in \mathbb{Q}$, we obtain

$$
(-1)^{d n} P\left(-x_{1}\right) \cdots P\left(-x_{n}\right)=(-1)^{d m} P\left(-y_{1}\right) \cdots P\left(-y_{m}\right)
$$

and hence

$$
P\left(-x_{1}\right)^{2} \cdots P\left(-x_{n}\right)^{2}=P\left(-y_{1}\right)^{2} \cdots P\left(-y_{m}\right)^{2} .
$$

Therefore the set $\{P(-m) \mid m \in M\}$ is multiplicatively dependent. Dubickas [2] proved that for any quadratic polynomial $P(x) \in \mathbb{Q}[x]$ and any $t \in \mathbb{Z}$ the set $\{P(n) \mid$ $\left.n \in \mathbb{Z}_{t}\right\}$ is multiplicatively dependent.

It was proved in [1] that every cubic algebraic number α is \mathbb{Q}-dependent and $\ell(\alpha, \mathbb{Q}) \leqslant 8$. We prove the following theorem.

Theorem 1. Suppose that a, c and m are rational integers, $c \neq 0$, such that

$$
\left|2 a m-3 m^{2}-1\right|>|c|(|a|+|c|+1) .
$$

Let α be a root of the polynomial $P(x)=x^{3}+a x^{2}+\left(2 a m-3 m^{2}-1\right) x+c$. Then $P(x)$ is irreducible (in $\mathbb{Q}[x]$), α is \mathbb{Z}-dependent and $\ell(\alpha, \mathbb{Z}) \leqslant 4$.

Proof. Since α is a root of $P(x)$, it follows that

$$
\begin{equation*}
\alpha^{3}+a \alpha^{2}+\left(2 a m-3 m^{2}-1\right) \alpha+c=0 . \tag{2}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \alpha^{3}+a \alpha^{2}+\left(2 a m-3 m^{2}-1\right) \alpha+c \\
& \quad=(\alpha+m)^{3}+(a-3 m)(\alpha+m)^{2}-(\alpha+m)+c-a m^{2}+2 m^{3}+m \tag{3}
\end{align*}
$$

Let $r:=-2 m^{3}+a m^{2}-c$. Then (2) and (3) imply

$$
(\alpha+m)^{2}(\alpha+a-2 m)=\alpha+r
$$

so that α is \mathbb{Z}-dependent and $\ell(\alpha, \mathbb{Z}) \leqslant 4$.

We are left to prove that the polynomial $P(x)$ is irreducible. Indeed, assume that it is reducible. Consequently, $P(x)$ is divisible by a linear polynomial from $\mathbb{Q}[x]$, and therefore it has a root $x_{0} \in \mathbb{Q}$. Since $P(x)$ is monic with integer coefficients, $x_{0} \in \mathbb{Z}$ and x_{0} is a divisor of $P(0)=c \neq 0$. Hence $0<\left|x_{0}\right| \leqslant|c|$ and

$$
\begin{aligned}
\left|2 a m-3 m^{2}-1\right| & =\left|\frac{P\left(x_{0}\right)-\left(x_{0}^{3}+a x_{0}^{2}+c\right)}{x_{0}}\right|= \\
& =\left|\frac{x_{0}^{3}+a x_{0}^{2}+c}{x_{0}}\right|=\left|x_{0}^{2}+a x_{0}+\frac{c}{x_{0}}\right| \leqslant \\
& \leqslant\left|x_{0}\right|^{2}+|a| \cdot\left|x_{0}\right|+\left|\frac{c}{x_{0}}\right| \leqslant \\
& \leqslant|c|^{2}+|a| \cdot|c|+|c|=|c|(|a|+|c|+1)
\end{aligned}
$$

which is a contradiction. Therefore $P(x)$ is irreducible.
Corollary 1. For any $a, c \in \mathbb{Z}, c \neq 0$, there exist infinitely many negative integers b such that the polynomial $P(x):=x^{3}+a x^{2}+b x+c$ is irreducible (over \mathbb{Q}) and if α is a root of $P(x)$ then it is \mathbb{Z}-dependent and $\ell(\alpha, \mathbb{Z}) \leqslant 4$.

References

[1] P. Drungilasa and A. Dubickas. Multiplicative dependence of shifted algebraic numbers. Col. Math., 96(1):75-81, 2003.
[2] A. Dubickas. Multiplicative dependence of quadratic polynomials. Lith. Math. J., 38:225231, 1998.
[3] S. Lang. Algebra, 3rd revised ed., Graduate Texts in Mathematics, vol. 211. Springer, New York, NY, 914 pp., 2002.
[4] A. Laurinčikas. Limit theorems for the Riemann zeta-function. Kluwer, Dordrecht, 1996.
[5] A. Laurinčikas and K. Matsumoto. The joint universality and the functional independence of Lerch zeta-functions. Nagoya Math. J., 157:221-227, 2000.
[6] A. Laurinčikas and J. Steuding. A limit theorem for the Hurwitz zeta-function with an algebraic irrational parameter. Arch. Math. (Basel), 85(5):419-432, 2005.
[7] M.R. Murty and J. Esmonde. Problems in Algebraic Number Theory, 2nd ed. Springer, 2005.

REZIUMĖ

Kubinių algebrinių skaičiu multiplikatyvusis priklausomumas

P. Drungilas, L. Klimavičius

Šiame darbe nagrinejjamas kubinių algebrinių skaičių multiplikatyviojo priklausomumo klausimas. Irodoma, kad egzistuoja be galo daug algebrinių skaičių α, su kuriais aibė $\{\alpha+x \mid x \in \mathbb{Z}\}$ yra multiplikatyviai priklausoma.
Raktiniai žodžiai: algebrinis skaičius, multiplikatyvusis priklausomumas.

