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Abstract. In image classification often occur such situations, when images in some level are
corrupted by additive noise. Such noise in image classification can be modeled by Gaussian
random fields (GRF). In image classification supervised and unsupervised methods are used.
In this paper we compare our proposed supervised classification methods based on plug-
in Bayes discriminant functions (PBDF) (see [6] and [11]) with unsupervised classification
method based on grey level co-occurrence matrix (GLCM) (see e.g. [8] and [1]). The remotely
sensed image is used for classification (USGS Earth Explorer). Also GRF with different
spatial correlation range are generated and added to the original remotely sensed image.
Such situation can naturally occur during forest fire, when smoke covers some territory.
These images are used for classification accuracy examination.

Keywords: image classification, Gaussian random fields, supervised classification, Bayes discrimi-

nant function, unsupervised classification, grey level co-occurrence matrix.

Introduction

Image classification is a problem of dividing an observed image into several homoge-
neous regions by labeling pixels based on feature information and information about
spatial adjacency relationships with training sample. Switzer [13] was the first to
treat classification of spatial data. For features based on Gausian Markov RF model,
the influence of texture rotation to image classification is considered by [5]. Spatial
contextual classification problems arising in geospatial domain is considered by [10].
Atkinson and Lewis [3] reviewed geostatistical techniques for classification of remotely
sensed images.

In the present paper for image classification we use method which is retracting
the popular requirement of conditional independence in Bayes classification rules (see
[6, 12]). Also the observation to be classified is assumed to be dependent on the
training sample. In the series of papers (see e.g., [9, 2, 4]) the incorporation of
geostatistical information of features into plug-in versions of classifiers is based on
the marginal distribution of the observation to be classified. Thus we investigated
the geostatistical Bayes classifiers based on conditional feature distribution of the
observation to be classified. The importance and effectiveness of proposed techniques
was examined in the examples on images with strictly separated classes corrupted
by spatial Gaussian noise (see [12]). In this paper we use proposed techniques for
classification of remotely sensed images which classes for classification are not strictly
separated before GRF noise is added.

http://www.mii.lt/LMR/
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The stationary GRF model for features and MRF model for class labels are con-
sidered. For the model mentioned above and in case of known population parameters
the error rates associated with PBDF is investigated (see [7, 12]).

In the present paper the comparison of proposed supervised PBDF methods and
unsupervised GLCM based classification method is made. The performance is evalu-
ated numerically and visually. For the numerical comparison of the tested classifica-
tion procedures the empirical errors of misclassification are used.

1 The main concepts and definitions

Suppose that the feature is modeled by Gaussian random field {Z(s): s ∈ D}, D ⊂ R2.
In the context of image analysis index s means pixel. The marginal model of obser-
vation Z(s) in class Ωl is

Z(s) = µl + ε(s),

where µl is the constant mean, and the error term is generated by zero-mean stationary
Gaussian random field {ε(s): s ∈ D} with covariance function defined by model for
all s, u ∈ D

cov
{

ε(s), ε(u)
}

= σ2r(s− u),

where r(s− u) is the spatial correlation function and σ2 is the variance.
Let L = {1, 2} be the label set, and let Sn = {si ∈ D, i = 1, . . . , n} be the set of

training pixels (STP). Denote by Y = (Y (s1), . . . , Y (sn))
′, Z = (Z(s1), . . . , Z(sn))

′

the labels and features vector, and denote by T ′ = (Z ′, Y ′) the training sample.
Assume that the model of Z for given Y = y is

Z = Xyµ+ E

where Xy is a design matrix, µ′ = (µ1, µ2) and E is the n-vector of random errors
that has multivariate Gaussian distribution Nn(0, σ

2R).
Denote by r0 and by R the vector of spatial correlations between Z0 and Zn and

the matrix of spatial correlations among components of Zn, respectively. Since Z0 is
correlated with training sample, we have to deal with conditional Gaussian distribu-
tion of Z0 given T = t (Z = z, Y = y) with means µ0

lt and variance σ2

0t.

Proposition 1 [Assumption]. The conditional distribution of Y (s0) given T = t
depends only on Y = y, i.e. πl(y) = P (Y (s0) = l | T = t), l = 1, 2.

Under the assumption of complete parametric certainty of populations, the Bayes
discriminant function (BDF) minimizing the probability of misclassification (PMC)
is formed by log ratio of conditional likelihoods

Wt(Z0;Ψ) =

(

Z0 −
1

2

(

µ0

1t + µ0

2t

)

)

(

µ0

1t − µ0

2t

)

/σ2

0t + γ(y), (1)

where γ(y) = ln(π1(y)/π2(y)) and Ψ = (β′, θ′)′.
So BDF allocates the observation in the following way: Classify observation Z

0

given T = t to population Ω1 if Wt(Z0, Ψ) > 0, and to population Ω2, otherwise.

Liet. mat. rink. LMD darbai, 52:200–204, 2011.
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Denote the three component vector of parameter estimates by Ψ̂ ′ = (µ̂′, σ̂2).
Then PBDF associated with BDF specified in (1) is

Wt(Z0; Ψ̂) =

(

Z0 −
1

2

(

µ̂0

1t + µ̂0

2t

)

)

(

µ̂0

1t − µ̂0

t

)

/σ̂0

0t + γ(y),

where µ̂0

lt = E(Z0 | T = t, Y (s0) = l) = µ′

l + α′

0(zn − Xyµ̂), l = 1, 2 and σ̂2

0t =
V (Z0 | T = t, Y (s0) = l) = σ̂2R0n, where for l = 1, 2, µ̂0

lt = µ̂l + α′

0(zn −Xyµ̂), and
σ̂2

0t = σ̂2R0n. Denote it by PBDFD.
If Z0 is assumed to be independent to T , then PBDF has the following form

W (Z0; Ψ̂) =

(

Z0 −
1

2
(µ̂1 + µ̂2)

)

(µ̂1 − µ̂2)/σ̂
2 + γ(y),

where µ̂ and σ̂2 are the estimates of µ and σ2, based on T = t. Denote it by PBDFI.

2 Numerical example

We have tested our approach on a real world image, namely on areal remotely sensed
image obtained with the Landsat7 satellite. The image shows the area from Lithuania
territory. We use grey version of the RGB image for the experiment. The crop of
the image containing forest and grassland is used. The cropped image dimensions are
500 × 500 pixels. Here we compare proposed supervised classification methods with
unsupervised classification method based on GLCM with relative distance d = 1, 32
grey levels, 7 × 7 window size and relative orientation quantified in four directions
(0◦, 45◦, 90◦, 135◦) is calculated. GLCM mean is implemented as the texture fea-
ture. The sub image of size 100× 100 pixels is extracted from the cropped image for
classification.

Suppose that original cropped image is corrupted by the noise modelled by GRF
with zero mean and Gaussian spatial correlation function given by r(h) =

exp{−|h|
2
/α} and also belonging to the Matern class. Here α is a spatial corre-

lation range parameter. Such noise can naturally occur from smoke or fog. For
supervised classification methods the training sample with n1 = n2 = 30 is selected
and 8 nearest neighbour scheme was used. GLCM are calculated from sub images of
size 30× 30 pixels using three sub images from forest territory and three images from
grassland territory. These GLCM are used as texture examples for classification. The
original and corrupted sub images are classified and results using proposed supervised
classification methods and unsupervised GLCM method are shown in (Fig. 1)

The empirical errors of misclassification are presented in Table 1. As we can
see from the Table 1 the proposed supervised methods perform better then GLCM,
especially when GRF is applied. We can see from the Table 1 and from pictures
(Fig. 1) that with very small correlation range parameter classification accuracy is
not high, but when the range parameter grows bigger accuracy becomes very similar
to original image without additive noise.

3 Conclusions

The proposed methods can be used to increase classification accuracy of remotely
sensed images when the smoke of fire, fog or other natural situations cover the territory
and the correlation range is large.
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Fig. 1. Images for classification (first column); classification results for PBDF method
(second column); results for PBDFI (third column) and results for CM (last column).
Original image (first row); image with additive GRF with α = 1 (second row); image

with additive GRF with α = 50 (last row).

Table 1. The empirical errors of misclassification. OI – original image
with no GRF added.

α PBDF PBDFI GLCM

P̂ (2 | 1) P̂ (1 | 2) P̂ (2 | 1) P̂ (1 | 2) P̂ (2 | 1) P̂ (1 | 2)

1 0.213 0.093 0.210 0.093 0.439 0.019
10 0.217 0.073 0.222 0.077 0.323 0.142
50 0.150 0.065 0.054 0.067 0.477 0.265

OI 0.036 0.015 0.036 0.015 0.050 0.035

The results show us the advantage of these methods against unsupervised classifi-
cation method based on GLCM. Of course we must have in mind that these methods
require training sample from the same territory.

The results of performed calculations give us the strong argument to encourage the
users do not ignore the spatial correlation and locational information about training
sample in image classification.
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REZIUMĖ

Vaizdų, modeliuojamų Gauso atsitiktiniais laukais, klasifikavimo metodų paly-
ginimas
L. Stabingienė, G. Stabingis, K. Dučinskas

Vaizdų klasifikavime dažnai sutinkame situaciją, kai, tam tikru lygiu, vaizdai yra sugadinti triukšmo.
Toks triukšmas vaizdų klasifikavime gali būti modeliuojamas Gauso atsitiktiniais laukais (GRF).
Vaizdų klasifikavime naudojami metodai su mokymu ir be mokymo. Šiame straipsnyje lyginami
mūsų pasiūlyti klasifikavimo su mokymu metodai, paremti įterptomis Bajeso diskriminantinėmis
funkcijomis (PDBF) (žiūrėti [6] ir [12]) su klasifikavimo be mokymo metodu paremtu pilkumo ly-
gio pasikartojimų matricomis (GLCM) (žiūrėti [8] ir [1]). Klasifikavimui naudojamas palydovinės
nuotraukos vaizdas (USGS Earth Explorer). Taip pat sugeneruojami GRF su skirtingais koreliacijos
pločiais ir uždedami ant palydovinės nuotraukos. Tokia situacija gali natūraliai susidaryti degant
miškui, kai gaisro dūmai uždengia tam tikrą dalį teritorijos. Šie paveiksliukai naudojami klasifikav-
imo tikslumo tyrimui.

Raktiniai žodžiai: vaizdo klasifikavimas, Gauso atsitiktiniai laukai, klasifikavimas su mokymu, Bajeso
diskriminantinė funkcija, klasifikavimas be mokymo, pilkumo lygio pasikartojimų matricos.
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