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MCMC based modelling of queuing systems

from empirical data
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Abstract. Markov chain Monte Carlo (MCMC) modelling technique requires one to be
able to construct a proposal density. There is no universal way to achieve this. This paper
considers the universal proposal selection technique based on the kernel density estimate.
Two channel queuing system with a priority was modelled using this technique. Empirical
data (the observed service times) and the rates of arrival processes are all the information
used for simulating the system.
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Introduction

This paper considers the MCMC approach to modelling service times in the M/G/2/∞
system with a priority. The system is depicted in Fig. 1. The probability distribution
of the service times is evaluated from the data observed. The kernel density estimate
(KDE) was used for this purpose.
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Fig. 1. The M/G/2/∞ queuing system with a priority.

It could be difficult to draw samples from a distribution of a complicated or un-
known analytical form. Having the empirical data it is possible, to construct a non-
parametrical probability density estimate for it. Custom approach of MCMC method
helps to sample from such a distribution.

By performing the modelling of the system the mean number of customers L(i)

and the mean waiting time W (i), i ∈ {1; 2}, are obtained. Fig. 2 illustrates a sample
run of a two channel queuing system. The results are compared to the theoretical
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Fig. 2. The run of the M/G/2/∞ queuing system.

system characteristics according to the formulas (1) and (2) [2].

W (1) =
(λ1 + λ2)E

2(x)(1 + v2x)

2(1− λ1E(x))
, L(1) = λ1 ·W (1), vx =

σ(x)

E(x)
, (1)

W (2) =
(λ1 + λ2)E

2(x)(1 + v2x)

2(1− λ1E(x))(1 − (λ1 + λ2)E(x))
, L(2) = λ2 ·W (2). (2)

1 Markov Chain Monte Carlo (MCMC)

Suppose a researcher must generate random service times xi, i = 1, n which are
distributed according to the π(·). The idea of MCMC is to construct a Markov chain
{xi}∞i=0 such that limi→∞ P (xi = x) = π(x).

P (X0 = x), P (y|x) = P (Xi+1 = y|Xi = x). (3)

Every Markov chain can be determined through an initial state and a transition
kernel (3). It is known that the stationary distribution is unique if Markov chain is
ergodic:

π(y) =
∑

x∈Ω

π(x)P (y|x), ∀y ∈ Ω. (4)

Having ergodic and discrete Markov chain with the discrete stationary probabil-
ities π(xi), the equation (4) holds. Total number of (n − 1) equations and n(n − 1)
unknown transition kernel probabilities are apparent.

Thus there exist an infinite number of transition kernels representing the station-
ary distribution π(x). Any of those transition kernels can be constructed and used for
generating xi. One of the most widely used methods for constructing such Markov
chain is Metropolis–Hastings algorithm [1]. It is implemented as follows. At first an
optional transition kernel Q(.y|x) is chosen. Then there exists a probability α for
chosen kernel Q being equal to transition kernel P :

P (y|x) = Q(y|x)α(y|x), y 6= x. (5)

By substituting (5) into (4), we have:

π(x)Q(y|x)α(y|x) = π(y)Q(x|y)α(x|y), ∀x 6= y. (6)

Liet. mat. rink. LMD darbai, 52:214–219, 2011.
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By solving (6) and taking in mind the higher acceptance ratio when sampling
random numbers [3], it is shown that:

α(y|x) = min

(

1,
π(y)Q(x|y)
π(x)Q(y|x)

)

. (7)

Sampling of each xi is performed in 4 steps. Firstly a candidate point xi is drawn
from the proposal distribution. Then the probability αi, indicating that this point
is also distributed by the target density, is calculated. The next step is to draw
ui ∼ U(0; 1) and compare it to αi. Finally, xi is accepted to the sample if ui < αi.
Otherwise xi = xi−1.

From (7) it is evident that π(x) can be determined up to a multiplicative con-
stant c, i.e. π(x) = c · h(x), where h(x) is a probability density function. An MCMC
independence sampler is implemented if Q(x|y) ≡ Q(x).

2 Nonparametric Probability Density Function (PDF) estima-
tion

Consider a sample consisting of random independent and identically distributed val-
ues xi. The kernel density estimate was chosen in order to evaluate the probability
density of xi.

f̂(x) =
1

nh

n
∑

i=1

k

(

x− xi

h

)

, (8)

where k(·) is the kernel function, h is its width [4]. The triangular kernel function is
useful if the data has sharp edged distribution. Gaussian kernel (9) makes the plot of
the estimate’s PDF very smooth.

k(x) =
1√
2π

e−
x
2

s . (9)

Such probability density estimation could be interpreted as the assignment of
kernel density function to each xi plus the weighted sum of all the other assignations.
The contribution of any other xj to the probability value at xi decreases if xi − xj

increases. The only drawback of such estimation is the necessity of using all the points
from the sample while evaluating the probability at a particular point.

Further research requires the cumulative density function of KDE. By integrating
the (8) we get (10) where K(·) is the cumulative of k(·).

F̂ (x) =
1

nh

x
∫

0

n
∑

i=1

k

(

t− xi

h

)

dt =
1

n

n
∑

i=1

K

(

t− xi

h

)

. (10)

3 Custom scheme for modelling service times

The first step of modelling a M/G/2/∞ queue is to observe the real system and
pick the empirical service times xi (Fig. 3a)). Here both of the arrival processes
are considered to have exponential distributions. The empirical data will be used
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to calculate both: KDE and cumulative KDE functions. So the second step is to
evaluate (8) and (10) by finding optimal h according to the empirical data. (8) will
serve as the target distribution in Metropolis–Hastings method.

The key feature of the scheme presented is the proposal density q(·) for KDE.
There are a number of techniques to construct it, because the problem is to find
probability distribution similar in shape to the target distribution. In this paper the
proposal density is considered to be a piecewise linear distribution, which acts as a
histogram of KDE.

The researcher can divide the possible service times into intervals and set prob-
abilities for them according to the areas below the KDE in those intervals. This is
a fast KDE approximation, but we propose a different approach instead. Calculat-
ing the area below KDE in any interval involves approximating it by an angled line.
We bypass this by calculating the cumulative KDE values at the endpoints of the
intervals (Fig. 3b)) and thus knowing the values for proposal density. By doing this,
the approximation of cumulative KDE is obtained and is used for sampling from the
proposal distribution.
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(b) the cumulative KDE function

Fig. 3. Evaluation of the service time distribution function.

Next follows the sampling process itself. It is performed by simply drawing a num-
ber ui and reflecting it to the domain using obtained approximation of the cumulative
KDE (which is also an angled line). The resulting value xi is accepted to the sample
according to the (7).

The intervals between arrival times for each queue are generated by inverse CDF
of exponential distribution. Now the implementation of the queuing system model in
a chosen programming language remains.

4 The results of M/G/2/∞ system simulation

The queuing system with parameters λ1 = 0.7, λ2 = 2.2 and log-normally distributed
service times has been modelled with the technique discussed above. The parameters
of the service time distribution were µlogn = −1.5 and σlogn = 0.4. 5 evenly spaced
values of service time x were used for constructing the approximation of the cumula-
tive service time distribution function. By using the inverse log-normal distribution
function, 100 empirical service times were generated.

According to the table above, the relative error of the modelling is unacceptable.
This is due to the constant kernel width and the fact that KDE was performed on the

Liet. mat. rink. LMD darbai, 52:214–219, 2011.
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Table 1. The results of the modelling.

Characteristics L(1) W (1) L(2) W (2)

Theoretical 0.052 0.075 0.550 0.250
Empirical 0.587 0.108 1.280 0.350
Relative error 0.911 0.443 1.326 0.398

support (0;∞). Using variable KDE width would decrease relative errors to a certain
degree. On the other hand, randomly sampled service times do not follow log-normal
distribution identically. In other words, our approach simulates the queuing system
as is, i.e. simulation is completely based upon empirical data.
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Fig. 4. The histograms of the generated random service times.

Fig. 4 shows the histograms of random service times which were generated by the
proposed approach. Here the process of generating xi is divided into 2 parts. Firstly
the proposal density is sampled. Then each xi is accepted to the sample or not. It is
noticeable that MCMC is similar to well known rejection sampling.

5 Conclusions

1. For better results of simulating a probability distribution with domain (0;∞)
variable KDE width estimation should be used.

2. The more µ are closer to λ1 − λ2 the higher the relative errors of the system
characteristics will be.

3. The proposed approach is universal and could be used for modelling any real
stochastic system having only empirical data.

4. The sample xi ∼ π(x) must be scrambled for better quality of xi.

5. The experiments performed showed best results if the number of intervals used
for constructing piecewise-uniform probability density is greater than 15.
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REZIUMĖ

MCMC metodu paremtas aptarnavimo sistemos modeliavimas iš empirinių duo-
menų
M. Landauskas, E. Valakevičius

Markovo grandinių Monte Karlo (MCMC) metodas reikalauja sukonstruoti generuojamo atsitiktinio
dydžio tankio funkcijos aproksimaciją. Universalaus būdo, kaip tai padaryti, nėra. Straipsnyje
pateikta universali tankio funkcijos aproksimacijos MCMC metodui schema, paremta branduoliniu
tankio įverčiu. Dvikanalė aptarnavimo sistema su prioritetu buvo sumodeliuota šia technika. Em-
piriniai duomenys (stebėti aptarnavimo laikai) ir ateinančių paraiškų srauto intensyvumai yra visi
sistemos modeliavimui reikalingi duomenys.

Raktiniai žodžiai: Markovo grandinių Monte Karlo metodas, branduolinis tankio įvertis, aptarnavimo
sistema.
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