
i

i

“LMD11log_alon_plius” — 2011/11/28 — 16:31 — page 231 — #1
i

i

i

i

i

i

Lietuvos matematikos rinkinys. LMD darbai ISSN 0132-2818

52 tomas, 2011, 231–236 www.mii.lt/LMR/

Cut, invariant rule, and loop-check free sequent

calculus for PLTL

Romas Alonderis, Regimantas Pliuškevičius

Institute of Mathematics and Informatics, Vilnius University

Akademijos 4, Vilnius 2600

E-mail: romas.alonderis@mii.vu.lt; regimantas.pliuskevicius@mii.vu.lt

Abstract. In this paper, some loop-check free saturation-like decision procedure is pro-
posed for propositional linear temporal logic (PLTL) with temporal operators “next” and
“always”. This saturation procedure terminates when special type sequents are obtained.
Properties of PLTL allows us to construct backtracking-free decision procedure without his-
tories and loop-check.
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1 Introduction

It is well known that check of termination of a decision procedure plays a crucial
role in constructing derivations. Along with non-classical logics without induction
like tools, there are very important for computer science and artificial intelligence
non-classical logics containing induction like tools, e.g., temporal, dynamic, common
knowledge logics and their various modifications and combinations. Usually, these
induction like tools are realized using loop axioms. Determination of these loop-type
axioms involves creating new loops (“good loops” in opposite to “bad loops”) and the
new loop checking along with ordinary non-induction-type loop checking.

Determination of “good loops” are closely related to finding the so-called invariant
formulas. Some method for finding invariant formulas for Horn-like PLTL is proposed
in Pliuškevičius [9]. A specified loop-check procedure for the mutually belief logic is
proposed in Pliuškevičius et al. [10]. Using histories, some cut-free and invariant-free
calculi for PLTL are proposed by Gaintzarain et al. [6] and by Brünnler et al. [2].
Some efficient loop-check methods for various temporal logics was proposed using
Fisher’s [4] resolution method, see also Fisher et al. [5].

In the present paper, a propositional linear temporal logic with temporal operators
© (“next”) and � (“always”) is considered. It is known that combination of these
temporal operators requires to use induction-like tools. To determine such tools,
some simple saturation procedure is proposed. This procedure allows us to eliminate
(not using histories) the search of “bad” and “good” loops at all. Instead of these
loops, the proposed procedure generates some terminal sequents of special shape. The
constructed procedure is loop-check-free and backtracking-free.

The paper is organized as follows. In Section 2, initial proof-search procedures for
PLTL are described. In Section 3, a proposed loop-check-free backward proof-search
procedure is described. Foundation of the procedure is proved in Section 4.

http://www.mii.lt/LMR/
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2 Initial proof procedures for PLTL

The language of considered PLTL contains a set of propositional symbols P, P1, P2, . . . ,
Q,Q1, Q2, . . . ; the set of logical connectives ⊃,∧,∨,¬; temporal operators � (“al-
ways”) and © (“next”). The language does not contain the temporal operator ⋄
(“sometimes”), assuming that ⋄A = ¬�¬A. We assume that time is linear, discrete,
and ranges over the set of natural numbers.

Formulas in the considered calculi are constructed in the traditional way from
propositional symbols, using the logical connectives and temporal operators. The
formula ©A means “A is true at the next moment of time”; the formula �A means
“A is true now and in all moments of time in the future”.

We consider sequents, i.e., formal expressions Γ → ∆, where Γ and ∆ are finite
multisets of formulas.

Formulas and sequents without temporal operators are called logical. A sequent
which consists of propositional symbols is called elementary.

As far as sequent (tableaux) calculi for logics with induction-like axioms are con-
cerned, it is known that most theoretical investigations are based on three types of
proof-search procedures, namely: (a) procedures containing unrestricted or restricted
ω-type rules (b) procedures containing analytical cut-type rules, and (c) procedures
containing loop-type axioms (or “good loops”).

For the considered PLTL logic there are known proof procedures of the following
types:

(1) Proof procedures based on infinitary calculus GωPLTL defined by the following
postulates:

Axioms: Γ,A → ∆,A.

Logical rules: standard, see. e.g., [1].

Temporal rules: (Γ → ∆)/(Π,©Γ → Θ,©∆)(©); (A,©�A,Γ → ∆)/(�A,Γ →

∆)(� →), and (Γ → ∆,A;Γ → ∆,©A; . . . ;Γ → ∆,

n
︷ ︸︸ ︷
©, . . . ,©A; . . .)/(Γ →

∆,�A)(→ �ω).

It follows from Sundholm [12] that GωPLTL is sound and complete. There are
some interesting works concerning finitization of ω-type rule (→ �ω) (see, e.g.,
Brünnler and Steiner [3].

(2) Proof procedures based on calculus GIPLTL with analytical cut (or invariant-
like) rule. The calculus is obtained from GωPLTL by replacing the ω-type rule
(→ �ω) by the following analytical cut-type rule: (Γ → ∆, I; I → ©I; I →
A)/(Γ → ∆,�A)(→ � I).

(3) Proof procedures containing loop-type axioms (or good loops). The procedure
GLPLTL is obtained from the calculus GIPLTL by

(a) replacing rule (→ �I) by the rule (Γ → ∆,A;Γ → ∆,©�A)/(Γ →
∆,�A)(→ �);

(b) adding loop-type axioms as follows: a sequent S is a loop-type axiom iff
(1) S is above a sequent S′ on a branch of a derivation tree, (2) S′ is
such that S subsumes S′ (S < S′ in notation), i.e., S′ can be obtained
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from S by using structural rules of weakening and contraction only (S and
S′ coincide in special case), and (3) there is the right premise of (→ �)
between S and S′. See also Nide and Takata [8].

It follows from Gough [7], Wolper [13], Schwendimann [11] that GLPLTL is
sound and complete.

A sequent S is a primary one iff S = Σ1,©Γ1 → ©Γ2, Σ2, where Σi (i ∈ {1, 2})
is empty or consists of propositional symbols; ©Γi (i ∈ {1, 2}) is empty or consists of
formulas of the shape ©A, A arbitrary.

Let G′
LPLTL be the procedure obtained from GLPLTL by replacing the rule (©)

by the following one: (Π → ∆)/(Σ1,©Π → Σ2,©∆) (©′), where Σ1 ∩Σ2 = ∅. It is
easy to see that rule (©′) is invertible and GLPLTL and G′

LPLTL are equivalent.

3 Loop-check-free procedure

In this section, loop-check-free proof procedure for the considered PLTL is con-
structed.

We introduce operation ∗ which is applied to any formula and defined as follows:

1. (P )∗ = P ∗, (P ∗)∗ = P ∗, 2. (A⊙B)∗ = A∗ ⊙B∗, ⊙ ∈ {⊃,∨,∧},

3. (σA)∗ = σA∗, σ ∈ {¬,©}, 4. (�A)∗ =

{

�A∗, if A 6= A∗,

�
∗A∗, if A = A∗.

A marked formula of the shape A∗ is called ∗-marked.
We also introduce another operation + which is applied to any ∗-marked formula

and defined as follows:

1. (P ∗)+ = P+, (P+)+ = P+, 2. (A⊙B)+ = A+ ⊙B+, ⊙ ∈ {⊃,∨,∧},

3. (σA)+ = σA+, σ ∈ {¬,©}, 4. (�A)+ = �
+A+.

A marked formula of the shape A+ is called +-marked.
A sequent S is δ-reduced (δ ∈ {∗,+}) if

S = ©k1Πδ
11, . . . ,©

knΠδ
1n,�

δΓ δ → ©l1Πδ
21, . . . ,©

lmΠδ
2m,�δ∆δ,

where any of ©kiΠδ
1i (1 6 i 6 n) and ©ljΠδ

2j (1 6 j 6 m) is empty or consists of

δ-marked formulas of the shape

k
︷ ︸︸ ︷
© . . .©Aδ (k > 0, A is arbitrary if k > 0 and A is a

propositional symbol if k = 0) such that these formulas are sub-formulas of formulas
in �

δΓ δ. The formulas in �
δΓ δ are called essential.

A δ-reduced sequent is proper (improper), if �
δ∆δ 6= ∅ (�δ∆δ = ∅, correspond-

ingly). An improper sequent which is not a logical axiom is simple final (s-final in
short) one.

Let us introduce δ-marked (δ ∈ {∗,+}) modal rules, which allow us (along with
the rule (©) and logical rules) to generate in backward way δ-reduced sequents.

(A,©(�A)∗, Γ → ∆)/(�A,Γ → ∆)(�∗ →); (Γ → ∆,A; Γ → ∆,©(�A)∗)/(Γ →
∆,�A)(→ �

∗), where conclusions of these ∗-marked rules are not ∗-reduced.

Liet. mat. rink. LMD darbai, 52:231–236, 2011.
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(A,©�
+A+, Γ → ∆)/(�A,Γ → ∆)(�+ →); (Γ → ∆,A;Γ → ∆,©�

+A+)/(Γ →
∆,�A)(→ �

+), where conclusions of these +-marked rules are not +-reduced.

©k1−1Π+
11,©

l1−1Π+
12,�

+Γ+ → ©k2−1Π+
21,©

l2−1Π+
22,�

+∆+

Σδ
1 ,©

k1Π+
11,©

l1Π∗
12,©�

+Γ+ → Σδ
2 ,©

k2Π+
21,©

l2Π∗
22,©�

+∆+
(©)+.

Here k1, l1, k2, l2 > 0, ∆ 6= ∅ consists of arbitrary formulas; Π1,i, Π2,j (i, j ∈ {1, 2})
are empty or consist of arbitrary formulas; Σδ

i (i ∈ {1, 2}) is empty or consists of

δ-marked propositional symbols P
δj
j , where δj ∈ {+, ∗} and Σδ

1 ∩ Σδ
2 = ∅, assuming

that P = P ∗ = P+.
The marked calculus G′TL is obtained from the calculus G′

LPLTL by (1) replacing
the modal rules (� →) and (→ �) by the marked rules (�δ →), (→ �

δ) (δ ∈ {+, ∗}),
and (2) adding the rule (©)+.

Definition 1. Let S be a sequent. A δ-transformation (δ ∈ {∗,+}) of S is called
reduction of S to the sets {S11, . . . , S1n} (n > 0) (so called improper set) and
{S21, . . . , S2m} (m > 0) (so called proper set), where S1i (1 6 i 6 n) is an im-
proper δ-reduced sequent, a logical axiom, or a non-axiom elementary sequent; S2j

(1 6 j 6 m) is a proper δ-reduced sequent. The sequents Si,j (i ∈ {1, 2}) are leaves
of a G′TL derivation tree with S at the root: starting with S, apply backward appli-
cable marked modal rules (�δ →), (→ �

δ), (©)′, (©)+, and logical rules until logical
axioms, non-axiom elementary sequents, or δ-reduced sequents are obtained.

A +-transformation of a sequent S in G′TL is successful iff each member of the
improper set is a logical axiom.

A proper ∗-reduced sequent S∗ is i-final iff its +-transformation is successful. Such
a successful +-transformation of S∗ is a final one and is denoted by Rf (S

∗).
The loop-check-free calculus G∗TL is obtained from G′TL by (1) removing loop-

type axioms and (2) adding i-final sequents as non-logic axioms.
A G∗TL derivation D of a given sequent S is constructed backwards as follows.

∗-transformation of S is performed first. If there is a sequent in the improper set
which is not a logical axiom, then D is unsuccessful. Otherwise, D is successful if the
proper set is empty. If it is not, then +-transformation is performed for each sequent
in the proper set. If every such +-transformation is successful, then D is successful;
otherwise, D is unsuccessful.

Lemma 1 [Repeating property of ∗-reduced sequents]. Let G∗TL ⊢V S and

S∗ be any i-final sequent in V . Then there exists +-reduced sequent S+ in Rf (S
∗)

such that S+ � S∗ (assuming that formulas coincide if they differ only in marks, i.e.,

F = F ∗ = F+).

Let us consider termination of backward proof-search of a sequent S in procedure
G∗TL. The complexity of a sequent S (denoted C(S)) is defined as an ordered pair
〈mδ(S), n∗(S)〉 (δ ∈ {+, ∗}), where mδ(S) is the number of different occurrences of
non-δ-marked � in S; n∗(S) is the number of different occurrences of �

∗ in S.

Lemma 2. Let G∗TL ⊢V S and S1, S2 be any primary sequents in V such that S2 is

above S1 and there are no primary sequents between them, then C(S2) < C(S1).
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Relying on the definition of G∗TL, definition of derivability, Lemma 2, and using
invertibility of the rules, we get loop-check-free P-SPACE decision procedure without
back-tracking. The procedure is defined as follows. First ∗-transformation of a given
sequent S is performed separately in each branch l. If the branch ends-up by an
s-final sequent or elementary non-axiom sequent, then S is not derivable. If the
branch ends-up by a proper sequent S∗, then +-transformation of S∗ is performed
separately in each branch l1. If l1 ends-up by an s-final sequent or elementary non-
axiom sequent, then S is not derivable; otherwise, next proper sequent S∗

1 in the
proper set of ∗-transformation of S is considered. If either a logical axiom or i-final
sequent is obtained in every branch, then G∗

TL ⊢ S; otherwise G∗
TL 6⊢ S.

Termination of the algorithm follows from Lemma 2.

4 Foundation of G∗TL

Let G∗′TL be a calculus obtained from G∗TL by adding the loop-type axioms and
non-marked modal rules (� →), (→ �).

Lemma 3. (1) If G∗′
TL ⊢V S, then G∗

TL ⊢V ∗

S.

(2) If G∗′
TL ⊢V S, then G′

L
PLTL ⊢V ∗

S∗.

Theorem 1. The calculus G∗TL is sound and complete.
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REZIUMĖ

Sekvencinis skaičiavimas be pjūvio, invariantinės taisyklės ir ciklų tikrinimo
tiesinio laiko teiginių logikai
R. Alonderis, R. Pliuškevičius

Straipsnyje pateikta prisotinimu pagrįsta išsprendžiamumo procedūra tiesinio laiko teiginių logikai
(TLTL) su operatoriais „sekantis” ir „visada”. Ši prisotinimo procedūra baigia darbą kai gaunamos
tam tikro tipo sekvencijos. TLTL savybės leidžia sukonstruoti polinomonio erdvinio sudėtingumo
išsprendžiamumo procedūrą, nenaudojant istorijų, ir ciklų tikrinimo.

Raktiniai žodžiai: išsprendimo procedūra, sekvencinis skaičiavimas, ciklų tikrinimas, laiko logika.
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