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Abstract. We give the new results on the theory of the one-sided (left) strongly prime
modules and their strongly prime radicals. Particularly, the conceptually new and short
proof of the A.L.Rosenberg’s theorem about one-sided strongly prime radical of the ring is
given. Main results of the paper are: presentation of each left stongly prime ideal p of a
ring R as p = R ∩ M, where M is a maximal left ideal in a ring of polynomials over the
ring R; characterization of the primeless modules and characterization of the left strongly
prime radical of a finitely generated module M in terms of the Jacobson radicals of modules
of polynomes M〈X1, . . . , Xn〉.
Keywords: strongly prime module, strongly prime ideal, primeless module, strongly prime radical,

Jacobson radical.

1 Left strongly prime modules and ideals

All rings considered in this paper are associative with identity element which is pre-
served by a ring homomorphisms, all modules are unitary. A ⊂ B means that A is a
proper subset of B.

A left non-zero module M over the ring R is called strongly prime if for any non-
zero x, y ∈ M , there exits a finite set of elements {a1, . . . , an} ⊆ R, n = n(x, y),
such that AnnR{a1x, . . . , anx} ⊆ AnnR{y}, i.e., that ra1x = · · · = ranx = 0, r ∈ R,
implies ry = 0.

Taking M = R in the definition of a strongly prime module over R, very important
notion of a left strongly prime ring is obtained (see [5]). Rings that are strongly prime
modules over their multiplication rings are investigated in [7].

A submodule P of some module M is called strongly prime if the quotient module
M/P is strongly prime R-module. Particularly, a left ideal p ⊂ R is called strongly
prime if the quotient module R/p is a strongly prime R-module. In terms of elements,
a left ideal p ⊂ R is strongly prime if for each u /∈ p there exists a finite subset
{a1, . . . , an} ⊆ R, n = n(u), such that ra1u, . . . , ranu ∈ p, r ∈ R, implies r ∈ p.

Simple modules are evidently strongly prime, so maximal left ideals of a ring are
strongly prime. Note, that some modules M have no prime submodules. and such
modules are called primeless. See [8] for basic properties of the primeless modules
over a commutative ring.

Let us look at the quasi-injective hull Q(M) of the left strongly prime module M .
By Theorem 19.2 in [3], Q(M) = ΛM ⊆ M̂ , where M̂ is the injective hull of M and
Λ = EndRM̂ .
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32 A. Kaučikas

Let H = EndRQ(M), elements of which we also write from the left. So Q(M)
becomes a canonical left R−H-bimodule. Now we put the definition of the strongly
prime module in the most natural context.

Theorem 1. A left R-module M is strongly prime if and only if its quasi-injective
hull Q(R) is the simple R−H-bimodule.

Proof. Let Q(M) be a simple R −H-bimodule. Take a nonzero elements x, y ∈ M .
Then there exist elements a1, . . . , an ∈ R, h1, . . . , hn ∈ H , such that h1a1x + · · · +
hnanx = y. If for some r ∈ R we have ra1x = · · · = ranx = 0, then ry = 0 because
rhix = hirx for all 1 6 i 6 n, so M is strongly prime.

Let now M be strongly prime. The fact that Q(M) is strongly prime R-module
when M is strongly prime is known, see [2]. Let x, y ∈ Q(M) be a nonzero elements.
Denote by z = (a1x, . . . , anx) ∈ (Q(M))n, where elements a1, . . . , an ∈ R are from the
definition of the strongly primeR-moduleQ(M), i.e., such that AnnR{a1x, . . . , anx} ⊆
AnnR{y}. So we can define the R-homomorphism ϕ : Rz → Ry ⊆ Q(R) ⊆ M̂ with
ϕrz = ry, r ∈ R. Extending ϕ to the R-homomorphism f : M̂n → M̂ , we obtain
that y = ϕz = fz =

∑

k aihix, where hi : Q(R) → Q(R) are the restrictions the

R-homomorphisms fi : M̂ → M̂ , 1 6 i 6 n, which are the components of the ho-
momorphism f . This exactly means that Q(M) is a simple R − H-bimodule. See
also [10], Theorem 2.1 in Ch.13.3 for another proof of this theorem.

Let R〈XH〉 be a polynomial ring with the set of noncommuting indeterminates Xh,
h ∈ H , commuting with elements of a ring R. We endow Q(M) with the canonical
R〈XH〉-module structure defining Xhx = hx for h ∈ H and x ∈ Q(M). So Theorem 1
means that Q(M) is a simple R〈XH〉-module for a strongly prime R-module M .

Let us now take a left strongly prime ideal p ⊂ R of a ring. Taking M = R/p

we obtain a simple R〈XH〉-module Q(R/p), H = EndRQ(R/p) with an element
1R ∈ Q(R/p). Using this element we obtain a canonical epimorphism ψ : R〈XH〉 →
Q(R/p), sending p ∈ R〈XH〉 to the element p1R ∈ Q(R/p). Since Q(R/p) is a simple
R〈XH〉-module, kerψ = M is a maximal left ideal in R〈XH〉. By the construction,
M ∩R = p. So we obtain a very important consequence of the Theorem 1.

Theorem 2. For each left strongly prime ideal p ⊂ R there exists a maximal left ideal
M ⊂ R〈XH〉, such that p = M ∩R.

Thus, conceptually, the general noncommutative situation is, in some sense, similar
to the commutative one since left strongly prime ideals can be obtained from a left
maximal ideals in a ring of polynomials.

We can now also characterise primeless modules. Recall, that a module which has
no maximal submodules is called Jacobson-radical. Let X be any set. We denote by
R〈X〉 the ring of polynomials over R with the set X of noncommuting indeterminates
which commute with elements from R and by M〈X〉 the polynomial module over a
left R-module M . Evidently, M〈X〉 is a canonical left R〈X〉-module.

Theorem 3. Module M over a ring R is primeless if and only if for any set X of
indeterminates, M〈X〉 is Jacobson-radical as the R〈X〉-module.
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On the left strongly prime modules and their radicals 33

Proof. If for some set X the moduleM〈X〉 contains some maximalR〈X〉-submodule N ,
then, evidently, P =M ∩N is strongly prime R-submodule in M , so M is not prime-
less R-module. Let now P ⊂ M be a stongly prime R-submodule. Then, as noted
above, Q(M/P ) is simple R〈X〉-module, where X = XH . So we have the canonical
R〈X〉-module epimorphism from M〈X〉 onto simple module Q(M/P ) and M〈X〉 is
not Jacobson-radical.

2 Left strongly prime radical of the module

The intersection of all left strongly prime submodules of a given R-module M is
called the left strongly prime radical of the module M , which we denote by splM .
By definition, splM = M when M does not have strongly prime submodules. First
we look at the case when M = R. Recall, that Lewitzki radical L(R) is the largest
locally nilpotent ideal of the ring R.

Theorem 4. For any ring R, left strongly prime radical splR coincides with the Le-
witzki radical L(R) of the ring.

Proof. If some element a /∈ p for some left strongly prime ideal, there exist the finite set
s = {a1, . . . , an} ⊆ Ra, such that ra1, . . . , ran ∈ p, r ∈ R, implies r ∈ p. Evidently,
sm * p for m ∈ N, so s is not nilpotent subset and a /∈ L(R). This proves that
L(R) ⊆ splR.

Let now a /∈ L(R). This means, that there exists a finite subset s = {a1, . . . , an} ⊆
RaR, which is not nilpotent. It’s clear, that we may take the elements ak in the form
αkaβk with αk, βk ∈ R. Then the finite set s̄ ⊆ Ra, consisting of all elements of
the form αka and βiαja also is not nilpotent. Let s̄ = {r1a, . . . , rma}. It’s easy to
check, that the polynomial F = (X1r1 + · · · + Xmrm)a − 1 is not left invertible in
the polynomial ring R〈X1, . . . , Xm〉. Thus the left ideal of the ring R〈X1, . . . , Xm〉,
generated by the polynomial F , is contained in some maximal ideal M. Evidently
a /∈ M. By the standard fact, M ∩ R is the left strongly prime ideal of the ring R,
which does not contain the given element a. Thus splR = L(R). See also for very
long and complicated proof of this fact in [8].

Let now M be a nonzero left finitely generated R-module. We denote by M〈X1,

. . . , Xn〉 the module of polynomials over M with noncommuting indeterminates
X1, . . . , Xn. Evidently, M〈X1, . . . , Xn〉 is a finitely generated module over a poly-
nomial ring R〈X1, . . . , Xn〉.

It is well known, that for each nonzero finitely generated module the set of its
maximal submodules is not empty. We recall, that the intersection of all maximal
submodules of a given module is called the Jacobson radical of the module. Denote
by Jn the Jacobson radical of a R〈X1, . . . , Xn〉-module M〈X1, . . . , Xn〉.

Theorem 5. Let M be a finitely generated R-module. Then

splM =
⋂

n∈N

(M ∩ Jn).

Proof. Let M ⊂M〈X1, . . . , Xn〉 be a maximal R〈X1, . . . , Xn〉 submodule. Evidently
M * M and M ∩M a proper strongly prime R-submodule of the module M . So
splM ⊆ R ∩ Jn for all n ∈ N.

Liet. mat. rink. LMD darbai, 51:31–34, 2010.
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34 A. Kaučikas

Let now x0 /∈ splM and let M be generated by elements x1, . . . , xk. This means
that there exists a strongly prime submodule P ⊂M such that x0 /∈ P , so x0 6= 0 in
M =M/P . As noted after the proof of the Theorem 1, the quasi-injective hull Q(M)
is a simple R〈XH〉-module, where H = EndRQ(M). So we have xi = pix0 in Q(M)
with pi ∈ R〈XH〉, 1 6 i 6 k. There is only a finite number of indeterminates from XH

which occur in the polynomials pi. We denote these indeterminates by X1, . . . , Xn

instead of Xh1
, . . . , Xhn

with h1, . . . , hn ∈ H . Evidently, elements xi−pix0 belong to
the kernel U of the canonical R〈X1, . . . , Xn〉-module homomorphism M〈X1, . . . , Xn〉
onto M〈X1, . . . , Xn〉. Clearly, x0 /∈ U . By Zorn’s Lemma, U is contained in some
maximal left R〈X1, . . . , Xn〉-ideal M ⊂ M〈X1, . . . , Xn〉. Also x0 /∈ M, because
x1, . . . , xk generate M . Thus we have found R〈X1, . . . , Xn〉-module MR〈X1, . . . , Xn〉
with x0 /∈ Jn.

We remark, that proved results on primeless modules and in the last theorem were
not known even in the case of a commutative ring R.
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REZIUMĖ

Stipriai pirminiai moduliai ir jų radikalai
A. Kaučikas

Charakterizuoti moduliai neturintys stipriai pirminių pomodulių. Baigtinai generuotiems moduliams
virš žiedo surasta stipriai pirminio radikalo išraiška per polinominių modulių Džekobsono radikalus.
Gauta stipriai pirminio vienpusio idealo išraiška per maksimaliuosius polinomų žiedų idealus.

Raktiniai žodžiai: stipriai pirminis modulis, stipriai pirminis idealas, stipriai pirminis radikalas,
Džekobsono radikalas.


