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Abstract. In statistical image classification it is usually assumed that feature observations
given labels are independently distributed. We have retracted this assumption by proposing
stationary Gaussian random field (GRF) model for features observations. Conditional dis-
tribution of label of observation to be classified is assumed to be dependent on its spatial
adjacency with training sample spatial framework.
Perfomance of the Bayes discriminant function (BDF) and performance of plug-in BDF
are tested and are compared with ones ignoring spatial correlation among feature observa-
tions.For illustration image of figure corrupted by additive GRF is analyzed. Advantage of
proposed BDF against competing ones is shown visually and numerically.

Keywords: training sample, Markov Random Fields, spatial correlation.

Introduction

Image classification is a problem of dividing an observed image into several homoge-
neous regions by labeling pixels based on feature information and information about
spatial adjacency relationships with training sample. Switzer (1980) [3] was the first
to treat classification of spatial data. It is usually assumed that feature observa-
tions conditional on labels are independent (conditional independence) and normally
distributed and the labels follow the Markov Random Field (MRF) model. This
approach is widely used in image classification [2].

In this paper we propose classification rules by retracting the requirement of con-
ditional independence, i.e., between feature observation to be classified and feature
observations in training sample.

The stationary Gaussian Random Fields (GRF) model for features and MRF
model for class labels are considered. In the case of partial parametric uncertainty,
the plug-in BDF is proposed. This is the generalization of the discriminant function
derived in the case of training sample with fixed training sample and fixed prior prob-
abilities for labels [1]. The numerical analysis of proposed discriminant function is
performed in the case of isotropic exponential spatial correlation among features ob-
servations. For the MRF based on NN(4) neighborhood system, the the performance
of proposed discriminant functions are evaluated numerically and visually.
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1 The main concepts and definitions

Suppose that the feature is modeled by Gaussian random field {Z(s): s ∈ D ⊂ R

2
}

In the cotext of image analysis index s means pixel.
The marginal model of observation Z(s) in class Ωl is

Z(s) = µl + ε(s)

where µl is constant mean and the error term is generated by zero – mean stationary
Gaussian random field {ε(s): s ∈ D} with covariance function defined by model for
all s, u ∈ D

cov
{

ε(s), ε(u)
}

= σ2r(s − u)

where r(s − u) is the spatial correlation function and σ2 is variance as a scale param-
eter.

Denote the marginal Mahalanobis distance by ∆0 = |µ1 − µ2|/σ
Let L = {1, 2} be a label set. A label of pixel s ∈ D associated with Z(s) is a

random variable Y (s) taking values in L. Let Sn = {si ∈ D; i = 1, . . . , n} be a set
of training pixels. Set Y = (Y (s1), . . . , Y (sn))

′ and Z = (Z(s1), . . . , Z(sn))
′ and call

them labels vector and features vector, respectively.
Thus, the vector T ′ = (Z ′, Y ′) constitutes the training sample.
Suppose that the event {T = t} is equivalent to the event {Z = z} ∩ {Y = y},

where t, z, y are the realizations of the corresponding random vectors. Suppose that
the set of training pixels Sn is fixed. Denote by nl the number of observations in
T = t with labels equal l, l = 1, 2.

Assume that the model of Zn for given Yn = yn is

Z = Xyµ+ En (1)

where Xy = 1n1 ⊕ 1n2 is a design matrix, µ′ = (µ1, µ2) and E is the n-vector of
random errors that has multivariate Gaussian distribution Nn(0, σ

2R).
Consider the problem of classification (estimation of Y (s0)) of the feature obser-

vation Z0 = Z(s0), s0 ∈ D, s0 /∈ Sn with given training sample T = t.
Denote by r0 the vector of spatial correlations between Z0 and Zn and the matrix

of spatial correlations among components of Zn, respectively. Since Z0 is correlated
with training sample, we have to deal with conditional Gaussian distribution of Z0

given T = t (Z = z, Y = y) with means µ0

lt and variance σ2

0t that are defined by

µ0

lt = E
(

Z0

∣

∣ T = t, Y (s0) = l
)

= µl + α′

0
(Z0 −Xyµ), l = 1, 2

and variance
σ2

0t = V
(

Z0

∣

∣ T = t, Y (s0) = l
)

= σ2R0n

where
α′

0 = r′0R
−1, R0n = 1− r′0R

−1r0.

The analogous notations will be valid for the realizations of random variables
mentioned above. Let N0 be a neighborhood of s0 among locations from Sn.

Assumption 1 The conditional distribution of Y (s0) given T = t depends only on

Y = y, i.e.,

πl(y) = P
(

Y (s0) = l
∣

∣ T = t
)

, l = 1, 2.
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Under the assumption that the classes are completely specified the Bayes discrim-
inant function (BDF) [2] minimizing the probability of misclassification is formed by
the logarithm of ratio of conditional densities described above.

Then BDF for classification of Z0 given T = t (with Y = y) under the Assump-
tion 1 is

Wt(Z0) =

(

Z0 −

1

2

(

µ0

1t + µ0

2t

)

)

′
(

µ0

1t − µ0

2t

)

/σ2

0t + γ(y) (2)

where γ(y) = ln(π1(y)/π2(y)).
If Z0 is assumed to be independent to T , then BDF is

W (Z0) =

(

Z0 −

1

2
(µ1 + µ2)

)

′

(µ1 − µ2)/σ
2 + γ(y) (3)

Denote it by BDFI.
Suppose that means {µl} and σ2 are unknown and need to be estimated from

training sample T .
The plug – in BDF (PBDF)is obtained by replacing the parameters in BDF with

their estimates based on T = t. Then PBDF to the classification problem specified
above is

Ŵt(Z0) =

(

Z0 −

1

2

(

µ̂0

1t + µ̂0

2t

)

)

′
(

µ̂0

1t − µ̂0

2t

)

/σ̂2

0t + γ(y) (4)

where for l = 1, 2, µ̂0

lt = µ̂l + α′

0(zn −Xyµ̂), and σ̂2
0t = σ̂2R0n.

Analogously the PBDF for Wk(Z0) is

Ŵ (Z0; Ψ̂) =

(

Z0 −

1

2
(µ̂1 + µ̂2)

)

′

(µ̂1 − µ̂2)/σ̂
2 + γ(y) (5)

Denote it by PBDFI.

2 Numerical example and conclusions

The performance of classification rules associated with DF specified in (2)–(5) are
compared visually and numerically. The example of classification (restoration) of fig-
ure image corrupted by additive stationary GRF with isotropic exponential covariance
is considered. Assume that conditional distribution of Y (s0) given Y = y depends
only on labels for locations from neighborhood N0 = NN (4), i.e.,

π1(y) = 1/
(

1 + exp
(

ρ(1− 2j/4)
))

, j = 0, 1, . . . , 4,

where ρ is non negative constant called a clustering parameter, and j is the number
of locations from N0 with labels equal 1.

As a natural measure of performance for DF the empirical errors of misclassifica-
tion P̂ (1 | 2), P̂ (2 | 1) are used. They are calculated as frequencies of misclassification
of scene pixels and presented in Table 1.

Table 1 shows the advantage of BDF against BDFI and advantage of PBDF against
PBDFI in sence of minimum of empirical errors of misclassification.

We take as the true scene on area of 100×100 pixels in which there is a true B/W
image of number 3. The objective is to reconstruct this scene on the basis of scene

Liet. mat. rink. LMD darbai, 51:227–231, 2010.
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Table 1. Empirical errors of misclassification associated with different DF.

DF BDF BDFI PBDF PBDFI

P̂ (2 | 1) 0.0479 0.2165 0.0206 0.0236

P̂ (1 | 2) 0.1251 0.4208 0.0388 0.0771

(a) (b)

Fig. 1. (a) Scene corrupted by additive Gaussian Random field, (b) true image and training
sample.

(a) (b)

Fig. 2. (a) Reconstructed scene with PBDF, (b) reconstructed scene with PBDFI.

corrupted by the additive stationary GRF with zero mean and isotropic exponential
covariance (Fig. 1(a)). Training sample of size n = 60 with n1 = n2 = 30 is taken.
The true scene and locations of training pixels are presented in (Fig. 2(b)). For image
reconstruction all pixels of corrupted scene except training pixels are classified by
using different DF.

Comparing visually the reconstructions based on PBDF (Fig. 2(a)) and PBDFI
(Fig. 2(b)) with true scene (Fig. 1(b)) we see the advantage of the former one.

So the results of performed calculations give us the strong argument to encourage
the users do not ignore the spatial dependence in image classification and reconstruc-
tion.
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REZIUMĖ

Tiesinių diskriminantinių funkcijų taikymas vaizdų atpažinime
L. Stabingienė, G. Stabingis, K. Dučinskas

Straipsnyje nagrinėjamos tiesinės diskriminantinės funkcijos, kurių pagalba klasifikuojami Gauso at-
sitiktinio lauko stebiniai. Juodai balto vaizdo rekonstravimo pavyzdyje parodomas diskriminantinių
funkcijų (DF), atsižvelgiančių į klasifikuojamo stebinio erdvinę priklausomę nuo mokymo imties,
pranašumas prieš DF ignuoruojančias šią priklausomybę.

Raktiniai žodžiai: mokymo imtis, Markovo atsitiktiniai laukai, erdvinė koreliacija.
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