Transformations of formulae of hybrid logic

Stanislovas Norgèla, Linas Petrauskas

Vilnius University, Faculty of Mathematics and Informatics
Naugarduko 24, LT-03225 Vilnius
E-mail: stasys.norgela@mif.vu.lt; linas.petrauskas@mif.stud.vu.lt

Abstract

This paper describes a procedure to transform formulae of hybrid logic $\mathcal{H}(@)$ over transitive and reflexive frames into their clausal form.

Keywords: hybrid logic, clause.

Introduction

In propositional logic resolution calculus works on a set of clauses. However the wellknown methods for transforming propositional formulae to sets of clauses can not be directly applied in modal nor hybrid logics - these non-classical logics need a different approach.

In $[4,5]$ Mints et al describe transformation of formulae into their clausal form for modal logics $S 4$ and $S 5$. A modal literal is defined as formula of the form $l, \square l$ or $\diamond l$, where l is a propositional literal. A modal clause is a disjunction of modal literals. In [4] author proves that for every modal logic formula F there exist clauses D_{1}, \ldots, D_{n} and a propositional literal l such that sequent $\vdash F$ is derivable in sequent calculus $S 4$ (and, accordingly, $S 5$) if and only if sequent $\square D_{1}, \ldots, \square D_{n}, l \vdash$ is derivable. This transformation is the basis for the resolution calculus for modal logic S_{4} presented in [5]. F is a valid formula if and only if an empty clause is derivable from the set $\left\{\square D_{1}, \ldots, \square D_{n}, l\right\}$.

In this paper we aim to describe a similar transformation for formulae of hybrid logic $\mathcal{H}(@)$ over transitive and reflexive frames. Throughout the paper we will refer to this logic as $\mathcal{H}^{\mathcal{T} \mathcal{R}}(@)$. In Section 1 we prove a theorem about subformula replacement in formulae of $\mathcal{H}^{\mathcal{T} \mathcal{R}}(@)$ and use this result to describe transformation of formulae in Section 2. To prove things about $\mathcal{H}^{\mathcal{T} \mathcal{R}}(@)$ we use the sequent calculus proposed by Braüner in [3] along with two additional rules that make use of the reflexivity and transitivity frame properties of the logic under discussion:

$$
\frac{@_{a} \diamond a, \Gamma \vdash \Delta}{\Gamma \vdash \Delta}(\text { Refl }) \quad \frac{@_{a} \diamond c, \Gamma \vdash \Delta}{@_{a} \diamond b, @_{b} \diamond c, \Gamma \vdash \Delta}(\text { Trans })
$$

For an introduction of hybrid logic and it's properties see [1] and [2].

1 Subformula replacement in $\mathcal{H}^{\mathcal{T R}}(@)$

It is true in propositional logic that if we replace subformula A of some formula $F(A)$ with an equivalent formula B, then $F(A)$ is equivalent to $F(B)$. To put it more briefly,
$(A \equiv B) \rightarrow(F(A) \equiv F(B))$. However this statement does not hold in modal nor hybrid logic. In [4] Mints proved that in modal logic $S_{4} \square(A \equiv B) \rightarrow(F(A) \equiv F(B))$. We will prove a similar result for $\mathcal{H}^{\mathcal{T} \mathcal{R}}(@)$ by first introducing a notion of a binding nominal:

Definition 1. A binding nominal of a subformula A in formula $F(A)$ is nominal i, such that A is in the scope of operator $@_{i}$, and of all such operators $@_{i}$ has the maximal depth.

For instance, in formula $@_{i}\left(\diamond A \wedge @_{j}(\square B \rightarrow C)\right)$ subformula A is bound by nominal i whereas subformulae B and C are bound by nominal j.

Theorem 1. Let F be a formula of $\mathcal{H}^{\mathcal{T R}}(@)$ and let A be some subformula of F bound by nominal i. Then $@_{i} \square(A \equiv B)$ implies $F(A) \equiv F(B)$.

Proof. We will prove by constructing a derivation tree that the following sequent is derivable in sequent calculus of $\mathcal{H}^{\mathcal{T} \mathcal{R}}(@)$:

$$
@_{i} \square((A \rightarrow B) \wedge(B \rightarrow A)) \vdash @_{s}((F(A) \rightarrow F(B)) \wedge(F(B) \rightarrow F(A)))
$$

Here s is a new nominal. We will write Γ for $@_{i} \square((A \rightarrow B) \wedge(B \rightarrow A))$ in sequents when it is not used by any rule in order to save space.

After applying rules $(\vdash \wedge)$ and $(\vdash \rightarrow)$ in the first two steps the derivation tree branches as follows:

$$
\frac{\frac{\ldots}{\Gamma, @_{s} F(A) \vdash @_{s} F(B)}}{\frac{\Gamma \vdash @_{s}(F(A) \rightarrow F(B))}{\Gamma \vdash @_{s}((F(A) \rightarrow F(B)) \wedge(F(B) \rightarrow F(A)))}} \underset{\Gamma, @_{s} F(B) \vdash @_{s} F(A)}{\Gamma \vdash @_{s}(F(B) \rightarrow F(A))}(\vdash \rightarrow)
$$

The two branches are symmetric with respect to interchanging A with B, therefore we will only show derivation of the left branch. It is continued according to the main operation of formulae in the sequent using these rules:
$(\neg) \quad F=\neg G(A)$:

$$
\frac{\frac{\ldots}{\Gamma, @_{s} G(B) \vdash @_{s} G(A)}}{\frac{\Gamma \vdash @_{s} \neg G(B), @_{s} G(A)}{\Gamma, @_{s} \neg G(A) \vdash @_{s} \neg G(B)}}(\neg \neg)
$$

$(\wedge) \quad F=(G(A) \wedge H):$

$$
\frac{\Gamma, @_{s} G(A), @_{s} H \vdash @_{s} H \quad \frac{\frac{\ldots}{\Gamma, @_{s} G(A) \vdash @_{s} G(B)}}{\Gamma, @_{s} G(A), @_{s} H \vdash @_{s} G(B)}}{\frac{\Gamma, @_{s} G(A), @_{s} H \vdash @_{s}(G(B) \wedge H)}{\Gamma, @_{s}(G(A) \wedge H) \vdash @_{s}(G(B) \wedge H)}(\wedge \vdash)}(\vdash \wedge)
$$

($\square) \quad F=\square G(A)$:

$$
\frac{\frac{\ldots}{\Gamma, @_{t} G(A) \vdash @_{t} G(B)}}{\frac{\Gamma, @_{s} \square G(A), @_{t} G(A), @_{s} \diamond t \vdash @_{t} G(B)}{}(\operatorname{Simp} \vdash)}(\square \vdash)
$$

(@) $F=@_{t} G(A):$

$$
\frac{\frac{\ldots}{\Gamma, @_{t} G(A) \vdash @_{t} G(B)}}{\Gamma, @_{t} G(A) \vdash @_{s} @_{t} G(B)}(\vdash:)
$$

We don't give separate rules for \vee, \rightarrow and \diamond as $G \vee H \equiv \neg(\neg G \wedge \neg H), G \rightarrow$ $H \equiv \neg(G \wedge \neg H)$ and $\diamond G \equiv \neg \square \neg G$. The derivation is continued unambiguously by applying one of these rules, and only a single branch is left open each time - the one with subformulae A and B. Since subformula A is bound by nominal i we will encounter operator $@_{i}$ and by definition of binding nominal this will be the last time the (@) rule is applied. At that point all formulae in the sequent will have the $@_{i}$ prefix and we will apply (Refl) rule to get:

$$
\begin{equation*}
\frac{\overline{@_{i} \square((A \rightarrow B) \wedge(B \rightarrow A)), @_{i} \diamond i, @_{i} G(A) \vdash @_{i} G(B)}}{@_{i} \square((A \rightarrow B) \wedge(B \rightarrow A)), @_{i} G(A) \vdash @_{i} G(B)} \tag{Refl}
\end{equation*}
$$

The sequent is now in the form $\Gamma, @_{i} \diamond x, @_{x} G(A) \vdash @_{x} G(B)$ and this form will be maintained in the rest of the derivation. The rules for \neg and \wedge do not change prefixes of formulae and we will not encounter the @ operator. For the \square operator we will use a slightly different rule:

$$
\begin{gathered}
\frac{\frac{\cdots}{\Gamma, @_{i} \diamond y, @_{y} G(A) \vdash @_{y} G(B)}}{\frac{\Gamma, @_{i} \diamond x, @_{y} G(A), @_{x} \diamond y \vdash @_{y} G(B)}{\Gamma, @_{i} \diamond x, @_{x} \square G(A), @_{x} \diamond y \vdash @_{y} G(B)}} \frac{(\text { Trans })}{\Gamma, @_{i} \diamond x, @_{x} \square G(A) \vdash @_{x} \square G(B)}(\vdash \vdash, \operatorname{Simp}) \\
(\vdash \square)
\end{gathered}
$$

Since formula only has a finite number of operators, subformula A (and B) will be reached and we will complete the derivation as follows:

$$
\begin{gathered}
\frac{@_{x} A \vdash @_{x} A \quad @_{x} B, @_{x} A \vdash @_{x} B}{@_{x}(A \rightarrow B), @_{x} A \vdash @_{x} B}(\rightarrow \vdash) \\
\frac{@_{x}((A \rightarrow B) \wedge(B \rightarrow A)), @_{x} A \vdash @_{x} B}{@_{i} \square((A \rightarrow B) \wedge(B \rightarrow A)), @_{i} \diamond x, @_{x} A \vdash @_{x} B}(\square \vdash, \operatorname{Simp} \vdash)
\end{gathered}
$$

2 Transformation

In this section we describe how formulae of $\mathcal{H}^{\mathcal{T} \mathcal{R}}(@)$ can be transformed to sets of clauses using Theorem 1. A literal of hybrid logic $\mathcal{H}^{\mathcal{T} \mathcal{R}}(@)$ is a formula of the form $l, \square l, \diamond l$ or $@_{i} l$ where l is a proposition, a nominal or a negation of these, and i is a nominal. A clause of hybrid logic is a formula of the form $L, \square L$ or $@_{i} L$ where L is a disjunction of hybrid literals.

Formula F is valid if and only if the sequent $\vdash @_{s} F$ is derivable in sequent calculus $\mathcal{H}^{\mathcal{T} \mathcal{R}}(@)$. We will prove the following statement.

Theorem 2. Let F be a formula of $\mathcal{H}^{\mathcal{T R}}(@)$, A be some subformula of F bound by nominal i, and p be a propositional variable not in F. Then $\Gamma \vdash @_{s} F(A)$ is derivable if and only if $\Gamma, @_{i} \square(p \equiv A) \vdash @_{s} F(p)$ is derivable.

Proof. Let us first consider the case that $\Gamma \vdash @_{s} F(A)$ is derivable. Then we apply the cut rule in the first step to get:

$$
\frac{\frac{\text { our premise }}{\Gamma \vdash @_{s} F(A)} \frac{\text { derivable by theorem } 1}{@_{s} F(A), @_{i} \square(p \equiv A) \vdash @_{s} F(p)}}{\Gamma, @_{i} \square(p \equiv A) \vdash @_{s} F(p)}
$$

Now let us say that $\Gamma, @_{i} \square(p \equiv A) \vdash @_{s} F(p)$ is derivable. Then there exists a finite derivation tree Υ. We can derive $\Gamma \vdash @_{s} F(A)$ as follows:

$$
\frac{\frac{\text { derivation is trivial }}{\vdash @_{i} \square(A \equiv A)} \frac{\Psi}{\Gamma, @_{i} \square(A \equiv A) \vdash @_{s} F(A)}}{\Gamma \vdash @_{s} F(A)}
$$

The subtree Ψ is derived from tree Υ by replacing p with formula A. Since we are replacing a propositional variable (an atom formula) all steps and axioms of the derivation remain correct.

A formula F of $\mathcal{H}^{\mathcal{T} \mathcal{R}}(@)$ can be transformed to a set of clauses as follows. We start with a sequent $\vdash @_{s} F$ and continuously select a subformula A_{i} containing only a single operation, replace it with a new propositional variable p_{i} and add a new premise $@_{n_{i}} \square\left(p_{i} \equiv A_{i}\right)$, where n_{i} is the binding nominal of A_{i}. By Theorem 2 the new sequent $@_{n_{i}} \square\left(p_{i} \equiv A_{i}\right) \vdash @_{s} F\left(p_{i}\right)$ is derivable if and only if the original sequent was. We repeat this step to replace every operation in F and derive a sequent of the form:

$$
@_{n_{1}} \square\left(p_{1} \equiv A_{1}\right), @_{n_{2}} \square\left(p_{2} \equiv A_{2}\right), \ldots, @_{n_{k}} \square\left(p_{k} \equiv A_{k}\right), @_{s} \neg p_{k} \vdash
$$

Formulae of this sequent are transformed to clauses by converting the equivalences into conjunctive normal form and using $@_{i} \square\left(D^{\prime} \wedge D^{\prime \prime}\right) \equiv @_{i} \square D^{\prime} \wedge @_{i} \square D^{\prime \prime}$.

For example, formula $\square p \wedge @_{b} \diamond q$ is transformed to a set of clauses as follows.

$$
\begin{aligned}
& \frac{\vdash @_{s}\left(\square p \wedge @_{b} \diamond q\right)}{@_{s} \square(r \equiv \square p) \vdash @_{s}\left(r \wedge @_{b} \diamond q\right)} \\
& \overline{@_{s} \square(r \equiv \square p), @_{b} \square(t \equiv \diamond q) \vdash @_{s}\left(r \wedge @_{b} t\right)} \\
& \overline{@_{s} \square(r \equiv \square p), @_{b} \square(t \equiv \diamond q), @_{s} \square\left(u \equiv @_{b} t\right) \vdash @_{s}(r \wedge u)} \\
& \overline{@_{s} \square(r \equiv \square p), @_{b} \square(t \equiv \diamond q), @_{s} \square\left(u \equiv @_{b} t\right), @_{s} \square(v \equiv r \wedge u) \vdash @_{s} v} \\
& \overline{@_{s} \square(r \equiv \square p), @_{b} \square(t \equiv \diamond q), @_{s} \square\left(u \equiv @_{b} t\right), @_{s} \square(v \equiv r \wedge u), @_{s} \neg v \vdash} \\
& \left\{@_{s} \square(\neg r \vee \square p), @_{s} \square(r \vee \diamond \neg p), @_{b} \square(\neg t \vee \diamond q), @_{b} \square(t \vee \square \neg q)\right. \text {, } \\
& @_{s} \square\left(\neg u \vee @_{b} t\right), @_{s} \square\left(u \vee @_{b} \neg t\right), @_{s} \square(\neg v \vee r), @_{s} \square(\neg v \vee u), \\
& \left.@_{s} \square(v \vee \neg r \vee \neg u), @_{s} \neg v\right\}
\end{aligned}
$$

Conclusions

The described transformation produces clauses of very simple form and can be used to construct efficient resolution calculus for hybrid logic $\mathcal{H}^{\mathcal{T} \mathcal{R}}(@)$.

References

[1] C. Areces and B. ten Cate. Hybrid logics. In Handbook of Modal Logic, pp. 821-868. Elsevier, 2006.
[2] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Language and Information, 4:251-272, 1995.
[3] T. Braüner. Natural deduction for hybrid logic. J. Logic Comput., 14(3):329-353, 2004.
[4] G. Mints. Gentzen-type systems and resolution rule. Part I. Lecture Notes in Comput. Sci., 417:198-231, 1988.
[5] G. Mints, V. Orevkov and T. Tammet. Transfer of sequent calculus strategies to resolution for s4. In Proof Theory and Modal Logic. Kluwer Academic Publishers, 1996.

REZIUMĖ

Hibridinės logikos formuliu transformavimas

S. Norgèla, L. Petrauskas

Aprašytas tranzityvios ir refleksyvios hibridinés logikos $\mathcal{H}(@)$ formuliu transformavimas í disjunktu aibę.
Raktiniai žodžiai: hibridinė logika, disjunktas.

