Some estimates of the normal approximation for mixture of Poisson and gamma random variables*

Jonas Kazys Sunklodas

Institute of Mathematics and Informatics
Akademijos 4, LT-08663, Vilnius
E-mail: sunkl@ktl.mii.lt

Abstract

In the paper, we present the upper bound of L_{p} norms Δ_{p} of the order ($a_{1}+$ $\left.a_{2}\right) /(\mathbb{D} Z)^{-1 / 2}$ for all $1 \leqslant p \leqslant \infty$, of the normal approximation for a standardized random variable $(Z-\mathbb{E} Z) / \sqrt{\mathbb{D} Z}$, where the random variable $Z=a_{1} X+a_{2} Y, a_{1}+a_{2}=1, a_{i} \geqslant 0$, $i=1,2$, the random variable X is distributed by the Poisson distribution with the parameter $\lambda>0$, and the random variable Y by the standard gamma distribution $\Gamma(\alpha, 0,1)$ with the parameter $\alpha>0$.

Keywords: normal approximation, L_{p} norms, Poisson distribution, gamma distribution, mixture of Poisson and gamma r.v.

1 Introduction

Let the random variable (r.v.) X be distributed by the Poisson distribution with the parameter $\lambda>0$ (for short, $X \sim \mathcal{P}(\lambda)$),

$$
\mathbb{P}\{X=k\}=\frac{\lambda^{k}}{k!} e^{-\lambda}, \quad k=0,1,2, \ldots
$$

and the r.v. Y by the standard gamma distribution with the parameter $\alpha>0$ (for short, $Y \sim \Gamma(\alpha, 0,1))$, i.e., its probability density function has the form [1, p. 180]

$$
f_{Y}(x)=\frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x} \cdot 1_{(0, \infty)}(x)
$$

where $\Gamma(\alpha)$ is the gamma function $\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$, and 1_{A} is the indicator of event A.

Assume that the r.v.'s X and Y are independent and consider a mixture of r.v.

$$
Z=a_{1} X+a_{2} Y, \quad \text { where } a_{1}+a_{2}=1, a_{i} \geqslant 0, i=1,2 .
$$

[^0]Denote

$$
\begin{gathered}
\Delta(x)=\mathbb{P}\{\xi<x\}-\Phi(x), \quad \xi=\frac{Z-\mathbb{E} Z}{\sqrt{\mathbb{D} Z}}, \quad \Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u \\
\Delta_{p}= \begin{cases}\left(\int_{-\infty}^{\infty}|\Delta(x)|^{p} d x\right)^{1 / p} & \text { if } 1 \leqslant p<\infty \\
\sup _{x \in \mathbb{R}}|\Delta(x)| & \text { if } p=\infty\end{cases}
\end{gathered}
$$

Here and in what follows \mathbb{R} is the real line.
It is easy to proove that the distribution function of the standardized Poisson r.v. $\frac{X-\mathbb{E} X}{\sqrt{\mathbb{D} X}}$, where $X \sim \mathcal{P}(\lambda)$, and the standardized gamma r.v. $\frac{Y-\mathbb{E} Y}{\sqrt{\mathbb{D} Y}}$, where $Y \sim$ $\Gamma(\alpha, 0,1)$, as $\mathbb{D} X \rightarrow \infty$ and $\mathbb{D} Y \rightarrow \infty$ respectively, converges to the standard normal distribution function $\Phi(x)$, i.e.,

$$
\begin{equation*}
\lim _{\mathbb{D} X \rightarrow \infty} \mathbb{P}\left\{\frac{X-\mathbb{E} X}{\sqrt{\mathbb{D} X}}<x\right\}=\lim _{\mathbb{D} Y \rightarrow \infty} \mathbb{P}\left\{\frac{Y-\mathbb{E} Y}{\sqrt{\mathbb{D} Y}}<x\right\}=\Phi(x), \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

In this paper we are interested in the rate of convergence of the L_{p} norm Δ_{p} for all $1 \leqslant p \leqslant \infty$. However, in this case, the author has not found any published results on the rates of convergence of the norms Δ_{p} for all $1 \leqslant p \leqslant \infty$. We have obtained here the upper bound of the norms Δ_{p} of the order $\left(a_{1}+a_{2}\right) / \sqrt{a_{1}^{2} \lambda+a_{2}^{2} \alpha}$ for all $1 \leqslant p \leqslant \infty$ with explicit constants (see Theorem 1). Obviously, these constants are not the best possible, but that was not the main author's aim.

To obtain the upper estimates of the norm Δ_{∞} (for uniform metric) and the norm Δ_{1} (for L_{1}), we formed linear differential equation from the characteristic function of the standardized r.v. $\xi=\frac{Z-\mathbb{E} Z}{\sqrt{\mathbb{D} Z}}=\frac{a_{1}(X-\lambda)+a_{2}(Y-\alpha)}{\sqrt{a_{1}^{2} \lambda+a_{2}^{2} \alpha}}$ by virtue of which we succeeded in getting proper estimates of differences: between this characteristic function and the normal one, and between their derivatives as well. The chosen proofs of estimates for the L_{p} norms are elementary.

Particular cases $a_{1}=0$ (for a standardized gamma r.v. $\xi=\frac{Y-\alpha)}{\sqrt{\alpha}}$) and $a_{2}=0$ (for a standardized Poisson r.v. $\xi=\frac{X-\lambda}{\sqrt{\lambda}}$) are investigated in the paper [9].

2 Main and auxiliary results

Now we formulate the main result.
Theorem 1. Let the r.v. X be distributed by the Poisson distribution with the parameter $\lambda>0$, the r.v. Y by the standard gamma distribution with the parameter $\alpha>0$, and r.v.'s X and Y be independent. Let

$$
Z=a_{1} X+a_{2} Y, \quad \text { where } a_{1}+a_{2}=1, a_{i} \geqslant 0, i=1,2 .
$$

Then, for all $1 \leqslant p \leqslant \infty$,

$$
\begin{align*}
& \Delta_{\infty} \leqslant \frac{7 a_{1}+18 a_{2}}{\sqrt{a_{1}^{2} \lambda+a_{2}^{2} \alpha}} \tag{2}\\
& \Delta_{p} \leqslant \frac{71 a_{1}+189 a_{2}}{\sqrt{a_{1}^{2} \lambda+a_{2}^{2} \alpha}} \tag{3}
\end{align*}
$$

Recall that $\mathbb{E} X=\mathbb{D} X=\lambda$ for the r.v. $X \sim \mathcal{P}(\lambda)$ and $\mathbb{E} Y=\mathbb{D} Y=\alpha$ for the r.v. $Y \sim \Gamma(\alpha, 0,1)$.

Denote the characteristic function of the standardized r.v. $\xi=\frac{Z-\mathbb{E} Z}{\sqrt{\mathbb{D} Z}}$ by $f(t)=$ $\mathbb{E} e^{i t \xi}$, and the derivative of the characteristic function $f(t)$ with respect to t by $f^{\prime}(t)$.

To prove Theorem 1, we use an auxiliary result, Lemma 2, on the behaviour of the functions $f(t)$ and $f^{\prime}(t)$.

Denote by $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ complex functions such that all $\left|\theta_{i}\right| \leqslant 1$.
The following statement is valid.
Lemma 1. Let the r.v. X be distributed by the Poisson distribution with the parameter $\lambda>0$, the r.v. Y by the standard gamma distribution with the parameter $\alpha>0$, and r.v.'s X and Y be independent. Let

$$
Z=a_{1} X+a_{2} Y, \quad \text { where } a_{1}+a_{2}=1, a_{i} \geqslant 0, i=1,2 .
$$

Denote

$$
b_{1}=\frac{a_{1}}{\sqrt{a_{1}^{2} \lambda+a_{2}^{2} \alpha}}, \quad b_{2}=\frac{a_{2}}{\sqrt{a_{1}^{2} \lambda+a_{2}^{2} \alpha}}, \quad c=1.5 b_{1}+4 b_{2} .
$$

Then the characteristic function $f(t)$ of the standardized r.v. $\frac{Z-\mathbb{E} Z}{\sqrt{\mathbb{D} Z}}$ satisfies the following homogeneous linear differential equation for all $|t| \leqslant \frac{1}{2 b_{2}}$:

$$
\begin{equation*}
f^{\prime}(t)=\left(-t+\theta_{1} c t^{2}\right) f(t) \tag{4}
\end{equation*}
$$

Moreover, for all $|t| \leqslant \frac{1}{c}$

$$
\begin{gather*}
\left|f(t)-e^{-t^{2} / 2}\right| \leqslant \frac{1}{3} c|t|^{3} e^{-t^{2} / 6} \tag{5}\\
\left|f^{\prime}(t)-\left(e^{-t^{2} / 2}\right)^{\prime}\right| \leqslant c t^{2} e^{-t^{2} / 2}+\frac{1}{3} c(1+c|t|) t^{4} e^{-t^{2} / 6} \tag{6}
\end{gather*}
$$

Proof. The characteristic functions of independent r.v.'s $X-\mathbb{E} X$ and $Y-\mathbb{E} Y$ are as follows:

$$
\mathbb{E} e^{i t(X-\mathbb{E} X)}=\exp \left\{\lambda\left(e^{i t}-1-i t\right)\right\}, \quad \mathbb{E} e^{i t(Y-\mathbb{E} Y)}=\frac{e^{-i t \alpha}}{(1-i t)^{\alpha}}
$$

Therefore

$$
f(t)=\mathbb{E} e^{i\left(t b_{1}\right)(X-\lambda)} \cdot \mathbb{E} e^{i\left(t b_{2}\right)(Y-\alpha)}=\frac{\exp \left\{\lambda\left(e^{i t b_{1}}-1-i t b_{1}\right)-i t b_{2} \alpha\right\}}{\left(1-i t b_{2}\right)^{\alpha}} .
$$

Taking the derivatives with respect to t on both sides of this expression, we get that for all $t \in \mathbb{R}$

$$
\begin{equation*}
f^{\prime}(t)=\frac{\left(\lambda b_{1}-i t \lambda b_{1} b_{2}\right)\left(1-e^{i t b_{1}}\right)-i t \alpha b_{2}^{2}}{t b_{2}+i} \cdot f(t)=f r \cdot f(t) \tag{7}
\end{equation*}
$$

where $f r$ denotes the fraction in (7). Since $\left|e^{i x}-1-i x\right| \leqslant \frac{1}{2} x^{2}$ for all $x \in \mathbb{R}$, and $\lambda b_{1}^{2}+\alpha b_{2}^{2}=1$, we can rewrite the fraction in (7) in the form

$$
\begin{equation*}
f r=-t+\frac{t^{2} b_{2}-\lambda t^{2} b_{1}^{2}\left(b_{2}+\theta_{2} \frac{1}{2} b_{1}\right)+\theta_{3} \frac{1}{2} \lambda t^{3} b_{1}^{3} b_{2}}{t b_{2}+i}=-t+K \tag{8}
\end{equation*}
$$

where K denotes the fraction in (8). Using the fact that $\lambda b_{1}^{2} \leqslant 1$ and $\left|t b_{2}+i\right| \geqslant \frac{1}{2}$ for all $|t| \leqslant \frac{1}{2 b_{2}}$, we have that

$$
\begin{equation*}
|K| \leqslant\left(\frac{3}{2} b_{1}+4 b_{2}\right) t^{2} \tag{9}
\end{equation*}
$$

Substituting (9) into (8), and afterwards substituting (8) into (7), we get (4).
Now, solving the linear differential equation (4) with the boundary condition $f(0)=1$, we get that the characteristic function $f(t)$ may be written in the form

$$
\begin{equation*}
f(t)=\exp \left\{-\frac{t^{2}}{2}+\theta_{4} \frac{1}{3} c|t|^{3}\right\} \tag{10}
\end{equation*}
$$

for all $|t| \leqslant \frac{1}{2 b_{2}}$.
To estimate the difference $\left|f(t)-e^{-t^{2} / 2}\right|$, we use the well-known fact that $\left|e^{z}-1\right| \leqslant$ $|z| e^{|z|}$ for all complex numbers z. We obtain that for all $|t| \leqslant \frac{1}{c}$

$$
\left|f(t)-e^{-t^{2} / 2}\right| \leqslant \frac{1}{3} c|t|^{3} e^{-t^{2} / 6}
$$

i.e., (5) is proved.

Substituting (5) into (4), we get (6).
Lemma 1 is proved.

3 Proof of Theorem 1

Estimation of Δ_{∞}. To estimate the uniform metric Δ_{∞}, we use the smoothing inequality of Esséen [5, p. 297] with $T=\frac{1}{c}>0$ and (5), and obtain that

$$
\begin{equation*}
\Delta_{\infty} \leqslant \frac{2}{\pi} \int_{0}^{T}\left|\frac{f(t)-e^{-t^{2} / 2}}{t}\right| d t+\frac{24}{\pi \sqrt{2 \pi}} \frac{1}{T} \leqslant\left(\frac{12}{\pi} \sqrt{\frac{2}{\pi}}+\sqrt{\frac{6}{\pi}}\right) c \tag{11}
\end{equation*}
$$

Estimation of Δ_{1}. To estimate the L_{1} norm Δ_{1}, we use the following inequality with $T=\frac{1}{c} \geqslant 1([4$, p. 25] and [6, p. 395]):

$$
\begin{align*}
& \int_{-\infty}^{\infty}|\mathbb{P}\{\xi<x\}-\Phi(x)| d x \leqslant \\
& 3\left(\int_{0}^{T}\left|\frac{f(t)-e^{-t^{2} / 2}}{t}\right|^{2} d t\right)^{1 / 2} \\
&+\sqrt{2}\left(\int_{0}^{T}\left|\frac{d}{d t}\left(\frac{f(t)-e^{-t^{2} / 2}}{t}\right)\right|^{2} d t\right)^{1 / 2}+\frac{8 \pi}{T} \tag{12}\\
& \leqslant \\
& 3 I_{1}+2\left(I_{2}+I_{3}\right)+\frac{8 \pi}{T}
\end{align*}
$$

where

$$
\begin{gathered}
I_{1}^{2}=\int_{0}^{T}\left|\frac{f(t)-e^{-t^{2} / 2}}{t}\right|^{2} d t, \quad I_{2}^{2}=\int_{0}^{T}\left|\frac{f^{\prime}(t)-\left(e^{-t^{2} / 2}\right)^{\prime}}{t}\right|^{2} d t \\
I_{3}^{2}=\int_{0}^{T}\left|\frac{f(t)-e^{-t^{2} / 2}}{t^{2}}\right|^{2} d t
\end{gathered}
$$

Using inequalities (5) and (6), we estimate the quantities I_{1}, I_{2}, and I_{3} from (12) with $T=\frac{1}{c} \geqslant(0.03)^{-1}$, and obtain that

$$
I_{1} \leqslant \frac{1}{2} \sqrt{\frac{3}{2} \sqrt{3 \pi}} \cdot c, \quad I_{2} \leqslant \sqrt{25.551 \sqrt{3 \pi}+\frac{3}{4} \sqrt{\pi}} \cdot c, \quad I_{3} \leqslant \frac{1}{2} \sqrt{\frac{1}{3} \sqrt{3 \pi}} \cdot c .
$$

Substituting these estimates into (12), we have that, for $T=\frac{1}{c} \geqslant(0.03)^{-1}$,

$$
\begin{equation*}
\Delta_{1} \leqslant 47.226 c \tag{13}
\end{equation*}
$$

The proof of Theorem 1 for $T=\frac{1}{c} \geqslant(0.03)^{-1}$ now follows from (11) and (13), because

$$
\Delta_{p} \leqslant \Delta_{\infty}^{(p-1) / p} \Delta_{1}^{1 / p}
$$

for all $1 \leqslant p<\infty$. The proof as $T=\frac{1}{c}<(0.03)^{-1}$ is trivial, since $\Delta_{p} \leqslant \sqrt{2}$ for all $1 \leqslant p \leqslant \infty\left(\right.$ for $\Delta_{1} \leqslant \sqrt{2}$, see [3, p. 528]).

Theorem 1 is proved.

References

[1] N. Balakrishnan and V.B. Nevzorov. A Primer on Statistical Distributions. Wiley, New Jersey, 2003.
[2] R.V. Erickson. On an l_{p} version of the berry-esséen theorem for independent and m-dependent random variables. Ann. Probab., 1(3):497-503, 1973.
[3] R.V. Erickson. L_{1} bounds for asymptotic normality of m-dependent sums using Stein's technique. Ann. Probab., 2:522-529, 1974.
[4] I.A. Ibragimov and Yu.V. Linnik. Independent and Stationary Connected Variables. Nauka, Moscow, 1965 (in russian).
[5] M. Loève. Probability Theory. I. Springer-Verlag, New York, Berlin, Heidelberg, $4^{\text {th }}$ edition, 1977.
[6] E. Lukacs. Characteristic Functions. Nauka, Moscow, 1979 (in russian).
[7] Ch. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proc. Math. Statist. and Probab., Vol. 2, pp. 583-602, Berkeley, CA, 1972. Univ. Calif. Press.
[8] J. Sunklodas. On the rate of convergence of L_{p} norms in the central limit theorem for independent random variables. Lithuanian Math. J., 42(3):296-307, 2002.
[9] J. Sunklodas. On the rate of convergence of L_{p} norms in the CLT for Poisson and gamma random variables. Lithuanian Math. J., 49(2):216-221, 2009.
[10] A.N. Tikhomirov. On the rate of convergence in the central limit theorem for weakly dependent variables. Theory Probab. Appl., 25:790-809, 1980.

REZIUMĖ

Normaliosios aproksimacijos ìverčiai mišriajam Puasono ir gama atsitiktiniam dydžiui

J. Sunklodas

Darbe gautas standartizuoto atsitiktinio dydžio $(Z-\mathbb{E} Z) / \sqrt{\mathbb{D} Z}$, kur $Z=a_{1} X+a_{2} Y, a_{1}+a_{2}=1$, $a_{i} \geqslant 0, i=1,2, X$ yra pasiskirstęs pagal Puasono skirstini su parametru $\lambda>0$, o Y - pagal standartini gama skirstini su parametru $\alpha>0$, normos Δ_{p} viršutinis ìvertis metrikoje L_{p} su visais $1 \leqslant p \leqslant \infty$.
Raktiniai žodžiai: normalioji aproksimacija, L_{p} norma, Puasono skirstinys, standartinis gama skirstinys, Puasono ir gama a.d. mišinys.

[^0]: * The research was partially supported by the Lithuanian State Science and Studies Foundation, grant No. T-70/09.

