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Abstract. The paper deals with specialization of the antecedent negation loop-rule for the negative impli-
cation free fragment of the propositional intuitionistic logic.
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1. Introduction

We investigate a fragment of the propositional intuitionistic logic without negative im-
plication. For the fragment, a loop-rule free, complete, and correct calculus LJ #

0\⊃− is
introduced. Idea that such a calculus could be constructed rose from Glivenko property
(see [3] and [4]) which says that a propositional logic formula beginning with negation
is derivable in an intuitionistic calculus iff it is derivable in classical.

We refer to [1] and [2] as to commonly known works dedicated for the loop-rule
specialization problem for intuitionistic logic sequent calculi. We also mention [5]
and [6] as earlier works dealing with the same problem.

The paper is organized as follows. First, we remind the common multisuccedent
structural rule free Gentzen-like calculus LJ ∗

0 of the intuitionistic propositional logic.
Using this calculus as a base, a new loop-rule free calculus LJ #

0\⊃− is introduced.

Then, the equivalence between LJ ∗
0 and LJ #

0\⊃− is proved for the fragment considered.

2. Calculus LJ ∗
0

The calculus LJ ∗
0 is a variant of the multisuccedent intuitionistic propositional

Gentzen-like sequent calculus. It is defined as follows:
1. Axioms: �,E → E,�.
2. Rules:

A,B,� → �

A ∧ B,� → �
(∧ →),

� → A,�;� → B,�

� → A ∧ B,�
(→ ∧),

A,� → �;B,� → �

A ∨ B,� → �
(∨ →),

� → A,B,�

� → A ∨ B,�
(→ ∨),
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¬A,� → A,�

¬A,� → �
(¬ →),

�,A →
� → ¬A,�

(→ ¬),

A ⊃ B,� → A,�;B,� → �

A ⊃ B,� → �
(⊃→),

�,A → B

� → A ⊃ B,�
(→⊃).

Here: E denotes an atomic formula; A and B denote arbitrary formulas; � and �

denote finite, possibly empty, multisets of formulas.
We introduce here some notation. We denote a derivation tree by V and the height

of the derivation tree by h(V ). The height of a derivation tree is reckoned to be the
length of the longest branch in it. The length of a branch is measured by the number
of rule applications in it.

Now we present some well known properties of LJ ∗
0 . All LJ ∗

0 rules, except (→ ¬)

and (→⊃), are strongly invertible. I.e., if the conclusion is derivable, then so is
the/each premise; moreover, there exists a derivation of any premise such that its
height is less or equal than that one of the conclusion. Further. Any sequent of the
shape �,D → D,� is derivable (D any formula). The structural rules of weakening
and contraction are strongly admissible. The rule of cut is admissible. The calculus is
correct and complete for at most one formula in the succedent sequents with respect to
the intuitionistic semantics.

We will freely use these properties further.

3. Calculus LJ #
0\⊃−

From now on, we consider the fragment of intuitionistic logic without negative impli-
cation.

The necessity to duplicate the main formula of (¬ →) in the premise is caused by
the fact that the succedent parametric formulas (i.e., the formulas except the side ones)
are dropped in the premises of (→ ¬) and (→⊃). Glivenko property for our frag-
ment can be reformulated as follows: in an LJ ∗

0 derivation, if the succedent of the root
sequent is empty, then succedent parametric formulas can be retained in premises of
(→ ¬) and (→⊃) and then there is no need for the main formula to be duplicated in
the premise of (¬ →). If the succedent at the root is empty, then every formula occur-
ring in the succedent of some upper node has come from the antecedent by applying
(¬ →). Here we already see a natural way how to prolong the Glivenko property for
any sequents, not necessarily with the empty succedent. In the proof search, mark the
succedent formulas which have come from the antecedent. Do not drop the parametric
marked formulas in the premises of (→ ¬) and (→⊃) and do not duplicate the main
formula of (¬ →) in the premise.

The calculus LJ #
0\⊃− is obtained from LJ ∗

0 by replacing its implication and nega-
tion rules. The rule (¬ →) of LJ ∗

0 is replaced by

� → Ā,�

¬A,� → �
(LN).
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(→ ¬) and (→⊃) of LJ ∗
0 are replaced by

�,A → �̄

� → α¬ A,�̄,�

(RN) and
�,A → α

B,�̄

� → A
α⊃ B,�̄,�

(RI),

respectively. Here α is the bar or the empty set. All formulas in �̄ are barred. No
formula in � is barred.

When the bar is introduced in (LN), we put it on the outermost symbol of A. If
the formula is split by a rule application, the bar is put on the outermost symbols
of the appropriate subformulas of A (of the side formulas) and so on. If, however, a
subformula is moved into the antecedent, then the bar is dropped.

Here is a derivation of the sequent ¬(¬A ∨ A) → E in LJ #
0\⊃−:

A → Ā
(→ ¬)→ ¬̄A,Ā,E
(→ ∨)→ ¬A∨̄A,E
(¬ →)¬(¬A ∨ A) → E

Bars have no impact on axioms. Thus, A → Ā is an axiom (we suppose here that A

is atomic).
We aim LJ #

0\⊃− to be correct and complete for our fragment of intuitionistic se-
quents. However, it is not correct so far. The LJ ∗

0 underivable sequent ¬(A ∧ B) →
¬A ∨ ¬B is derivable in LJ #

0\⊃−:

A → Ā

→ Ā,¬A,¬B
(→ ¬)

B → B̄

→ B̄,¬A,¬B
(→ ¬)

→ A∧̄B,¬A,¬B

¬(A ∧ B) → ¬A ∨ ¬B
(¬ →), (→ ∨)

(→ ∧)

Therefore we introduce a restriction.

RESTRICTION 1. Neither (RI) nor (RN) with a bar-free main formula can be
applied if below in the same branch (→ ∧) with a barred main formula is applied.

4. Correctness of LJ #
0\⊃−

LEMMA 1. All LJ #
0\⊃− rules except (RN) and (RI) are strongly invertible.

Proof. The lemma is proved by induction on the height of the conclusion deriva-
tion.

LEMMA 2. The LJ #
0\⊃− rules (RN) and (RI) are strongly invertible when all the

parametric formulas in the succedent of the conclusion are barred.
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Proof. Let us consider (RI):

�,A → α

B,�̄

� → A
α⊃ B,�̄

(RI).

Here α is the bar or empty set.
The base case is obvious. Let us consider the inductive case.
1) Suppose that α is the bar. Then the invertibility of (RI) in proved in the same

way as invertibility of (→⊃) of the classical calculus.
2) Suppose that α = ∅. Let us consider an application of (RI):

�,C → D̄, �̄

� → A ⊃ B,C⊃̄D,�̄
(RI).

We argue in the following way:

�,C → D̄, �̄
(RI)

� → B,C⊃̄D,�̄
(Weakening).

�,A → B,C⊃̄D,�̄

It is easy to check that the rule of weakening is strongly admissible in LJ #
0\⊃− .

The other cases are considered similarly as the above one or by the inductive hy-
pothesis.

LEMMA 3. LJ #
0\⊃− �V � → �̄,� implies LJ ∗

0 � �,¬� → �. Here ¬� is, natu-
rally, obtained from � by prefixing ¬ to every formula in �.

Proof. The lemma is proved by induction on h(V ).

THEOREM 1. LJ #
0\⊃− is correct with respect to the bar-free LJ ∗

0 derivable se-

quents: LJ #
0\⊃− � S implies LJ ∗

0 � S, where S is bar-free.

Proof. Suppose that LJ #
0\⊃− � S and S is bar-free. Then, by the above lemma,

LJ ∗
0 � S.

5. Completeness of LJ #
0\⊃−

LEMMA 4. Suppose that 1) LJ #
0\⊃− �V � → �̄,� (bars do not occur in �), 2) ‘∨’

does not occur or occurs in � only in the scope of ¬, and 3) � �= ∅. Then there is a
formula D ∈ � such that LJ #

0\⊃− � � → �̄,D.

Proof. The lemma is proved by induction on h(V ). The base case is obvious. As to
the inductive one, we consider only case:

S1 = � → Ā,�;S2 = � → B̄,�

� → A∧̄B,�
(→ ∧).
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We can assume that a strategy is applied in V . Always while possible, disjunction
and conjunction rules with non-barred main formulas are applied. By Lemma 1, these
rules are invertible. Thus, the strategy does not narrow the class of derivable in LJ #

0\⊃−
sequents.

Due to the strategy, � is of the shape �,¬�′, where � consists of atomic formulas
only. If � → � is an axiom, then the proof of the lemma is obvious. Otherwise, in
the same way as in item 6 in the proof of Lemma 3, we show that � is useless for
derivation and can be dropped. Now the proof of the present lemma is obvious.

LEMMA 5. The antecedent and succedent rules of contraction are strongly admis-
sible in LJ #

0\⊃− .

Proof. The lemma is proved by induction on the ordered pair 〈G,H 〉, where G

is the complexity of the contraction formula and H is the height of the conclusion
derivation. The rule invertibility is used, as well.

The base case is obvious. Let us consider the inductive one. We chose to consider
only, more uncommon, case:

�,A → B̄,A⊃̄B,�̄

� → A⊃̄B,A⊃̄B,�̄,�
(RI).

By Lemma 2, � �,A,A → B̄, B̄, �̄. Apply twice the inductive hypothesis on G
and (RI).

LEMMA 6. If � is bar-free and LJ #
0\⊃− � S = � → �, then LJ #

0\⊃− � S′ =
� → �′. Here �′ is obtained from � by barring some formulas.

Proof. The only hardship here is the Restriction 1 caused by application of (→ ∧)

when the main formula is barred.
Apply (∨ →) and (∧ →) in the bottom-up way to S and the resulting sequents

while possible. Do the same for S′. We get a tree V with S at the root and a tree V ′
with S′ at the root. The leaves of V are derivable iff the root is derivable since (∨ →)

and (∧ →) are invertible. Let us consider any leaf of V : Si = �i → �. By Lemma 4,
there is D ∈ � such that Si,1 = �i → D. If D is not barred in S′, then we can take
the derivation of Si,1 to be the derivation of Si and S′

i . Suppose that D is barred in S′.
Note that the restriction has no impact on the derivation of S′

i,1 = �i → D̄ since it has
no non-barred formulas in the succedent. Thus, S′

i,1 can be derived in the same way as
Si,1. Again, we have derivations of Si and S′

i .

THEOREM 2. LJ #
0\⊃− is complete with respect to the non-barred LJ ∗

0 derivable

sequents. LJ ∗
0 �V S implies LJ #

0\⊃− � S.

Proof. The theorem is proved by induction on h(V ). The base case is obvious. The
only harder case of the inductive step is the following:

¬A,� → A,�

¬A,� → �
(¬ →).



240 R. Alonderis

By the inductive hypothesis, LJ #
0\⊃− � ¬A,� → A,�. By Lemma 6, � ¬A,� →

Ā,�. By Lemma 1, � � → Ā, Ā,�. By Lemma 5, � � → Ā,� and

� → Ā,�

¬A,� → �
(LN).
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REZIUMĖ

R. Alonderis. Ciklinės neigimo antecedente taisyklės specializacija intuicionistinės propozicinės logikos
fragmento sekveciniam skaičiavimui

Straipsnyje yra pateiktas būdas kaip galima išspr
↪
esti ciklinės neigimo antecedente taisyklės specializacijos

problem ↪a intuicionistinės propozicinės logikos fragmento be neigiamos implikacijos sekvenciniam skai-
čiavimui.

Raktiniai žodžiai: sekvencinis skaičiavimas, ciklini ↪u taisykli ↪u specializacija.


