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Abstract. Augsten, Böhlen and Gamper [1] suggested a measure of similarity between ordered and labeled
trees based on subtree counts: two trees are declared close if they contain similar number of copies of
ordered and labeled subtrees of a given form, called pq-gram. We report the results of a simulation study
of statistical properties of distances based on pq-grams.
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1. Introduction

Augsten, Böhlen and Gamper [1] suggested a measure of similarity between (ordered
and labeled) trees based on subtree counts. Roughly speaking, two trees are declared
close if they contain similar numbers of copies of (ordered and labeled) subtrees of a
given form, called pq-gram. Augsten, Böhlen and Gamper [1] used distances based
on pq-grams to define approximate matching of hierarchical data.

Here we are interested in statistical properties of distances based on pq-grams. For
this purpose we consider several parametric families of Galton–Watson random trees.
Computer simulation results show that pq-gram distance effectively discriminates be-
tween two Galton–Watson trees generated for different values of parameter.

2. pg-gram distances of Galton–Watson trees

2.1. A rooted unlabeled tree on p + q vertices is called pq-gram if for every 0 �
j � p − 1 there is only one vertex in the distance j from the root and the vertex in the
distance p−1 from the root has q leaves of degree 1 (which are in the distance p from
the root), see Augsten, Böhlen and Gamper [1]. That is, in order to obtain the pq-gram
we stick the (center of the) star K1,q to one endpoint of the path on p vertices. Another
endpoint of the path is called the root of the pq-gram. The pq-gram is denoted T p,q .

Using letters from an alphabet, say �, of size k we obtain n = kp+q labeled ordered
pq-grams T

p,q

1 , . . . ,T
p,q
n . Given an ordered labeled tree T , with labels from �, we

prescribe the vector N(T ) = (N1, . . . ,Nn) that counts copies of T
p,q
i

, 1 � i � n, con-
tained in T . More precisely, Ni denotes the number of exact matchings of T

p,q
i in T

(order is important). One would expect that two ordered and labeled trees T1,T2 are
similar if the corresponding subtree count vectors N(T1) and N(T2) were close.
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Augsten, Böhlen and Gamper [1] define the pq-gram distance as follows. Let T

be an ordered labeled tree with labels from the alphabet �. Introduce an extra letter
′∗′ and extend the alphabet �∗ = � ∪ {∗}. The pq-extended tree T ∗ is constructed
from T by adding p − 1 ancestors to the root node, inserting q − 1 children before
the first and after the last child of each non-leaf node, and adding q children to each
leaf of T . All newly inserted nodes become labels ′∗′. Let the subtree count vector
N∗(T ∗) = (N∗

1 (T ∗), . . . ,N∗
m(T ∗)) be defined as above but for the alphabet �∗ and

the extended tree T ∗. In particular, we have m = (k + 1)p+q . The pq-gram distance
between two ordered labeled trees T1 and T2

�p,q(T1,T2) = 1 − 2

∑m
i=1 min{N∗

i (T ∗
1 ), N∗

i (T ∗
2 )}

∑m
i=1(N

∗
i (T ∗

1 ) + N∗
i (T ∗

2 ))
.

2.2. One would expect that graph similarity measure based on small subgraph count
should discriminate between graphs generated using different probabilistic models.
Galton–Watson tree is a convenient probabilistic model to test statistical properties of
the similarity measure based on pq-gram counts. Below we refer results of a simula-
tion study. Given tree T , we denote by T k the subtree induced by vertices that are in a
distance of at most k from the root.

In Examples 1–3 we put � = {a}. Therefore, we have �∗ = {a,∗}. Every node
of T k is labeled with the letter a, while some nodes of its extended version receive
also labels ′∗′.

Example 1. Given p we generate Galton–Watson tree T (p) with binomial Bi(10,p)

offspring distribution. Table 1 shows estimated values of mathematical expectations
of 23-gram distances �2,3(T 7(p),T 7(p′)), for p,p′ ∈ {0.1,0.2, . . . ,0.9}. These es-
timated values are based on computer simulation of 100 independent copies of T (p)

for each p.

Example 2. Given λ we generate Galton–Watson tree T (λ) with Poisson offspring
distribution with mean λ. Table 2 shows estimated values of mathematical expectations
of 23-gram distances �2,3(T 7(λ),T 7(λ′)), for λ,λ′ ∈ {0.125,0.25, . . . ,8}. These es-
timated values are based on computer simulation of 100 independent copies of T (λ)

for each λ.

Example 3. Given p we generate Galton–Watson tree T (p) with Geometric off-
spring distribution with parameter p ∈ (0,1). Table 3 shows estimated values of
mathematical expectations of 23-gram distances �2,3(T 100(p),T 100(p′)), for p,p′ ∈
{2−1,2−2, . . . ,2−7}. These estimated values are based on computer simulation of 100
independent copies of T (p) for each p.

In Examples 4–6 we put � = {a,b}. Therefore, we have �∗ = {a,b,∗}. We genera-
te Galton–Watson tree T with two types of offspring a and b. Given a vertex of type a

(respectively b) let Xaa and Xab (respectively Xba and Xbb) denote its offspring num-
bers of types a and b. Random variables Xaa,Xab,Xba,Xbb are independent and have
Poisson distributions with mean values λaa = 5p(a|a), λab = 5p(b|a), λba = 5p(a|b),
λaa = 5p(b|b). We denote T = T (p), where p = (p(a|a),p(b|a),p(a|b),p(b|b)).
The root of T chooses its label (a or b) at random and with equal probabilities.
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Example 4. Here we choose p(a|a) = p(a|b) = 1 − p(b|a) = 1 − p(b|b) where
p(a|a) ∈ {0.1,0.2, . . . ,0.9}. In this way we obtain 9 different vectors p1, . . . ,p9.
Table 4 shows estimated values of mathematical expectations of 23-gram distances
�2,3(T 100(pi),T

100(pj )), for 1 � i, j � 9. These estimated values are based on com-
puter simulation of 100 independent copies of T (p) for each p.

Table 1. Results of simulation which was described in Example 1

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.1306 0.2202 0.3497 0.4259 0.4819 0.5268 0.5635 0.5928 0.6164
0.2 0.2202 0.0415 0.1429 0.2442 0.3190 0.3740 0.4148 0.4462 0.4710
0.3 0.3497 0.1429 0.0091 0.1033 0.1781 0.2331 0.2739 0.3053 0.3301
0.4 0.4259 0.2442 0.1033 0.0027 0.0749 0.1299 0.1707 0.2021 0.2269
0.5 0.4819 0.3190 0.1781 0.0749 0.0009 0.0550 0.0958 0.1272 0.1520
0.6 0.5268 0.3740 0.2331 0.1299 0.0550 0.0004 0.0408 0.0722 0.0970
0.7 0.5635 0.4148 0.2739 0.1707 0.0958 0.0408 0.0002 0.0314 0.0561
0.8 0.5928 0.4462 0.3053 0.2021 0.1272 0.0722 0.0314 0.0001 0.0248
0.9 0.6164 0.4710 0.3301 0.2269 0.1520 0.0970 0.0561 0.0248 0.0000

Table 2. Results of simulation which was described in Example 2

λ 0.125 0.250 0.500 0.750 1.000 1.500 2.000 4.000 8.000

0.125 0.1277 0.1939 0.3174 0.3948 0.4525 0.4993 0.5360 0.5651 0.5886
0.250 0.1939 0.0461 0.1406 0.2358 0.3061 0.3587 0.3986 0.4296 0.4543
0.500 0.3174 0.1406 0.0112 0.0981 0.1690 0.2216 0.2616 0.2925 0.3172
0.750 0.3948 0.2358 0.0981 0.0033 0.0709 0.1236 0.1635 0.1945 0.2192
1.000 0.4525 0.3061 0.1690 0.0709 0.0013 0.0527 0.0926 0.1236 0.1482
1.500 0.4993 0.3587 0.2216 0.1236 0.0527 0.0006 0.0399 0.0709 0.0956
2.000 0.5360 0.3986 0.2616 0.1635 0.0926 0.0399 0.0003 0.0310 0.0557
4.000 0.5651 0.4296 0.2925 0.1945 0.1236 0.0709 0.0310 0.0002 0.0247
8.000 0.5886 0.4543 0.3172 0.2192 0.1482 0.0956 0.0557 0.0247 0.0001

Table 3. Results of simulation which was described in Example 3

p (1/2)1 (1/2)2 (1/2)3 (1/2)4 (1/2)5 (1/2)6 (1/2)7

(1/2)1 0.6323 0.6841 0.7771 0.8552 0.8934 0.9332 0.9402
(1/2)2 0.6841 0.5476 0.5732 0.6627 0.7325 0.7733 0.7945
(1/2)3 0.7771 0.5732 0.3561 0.3952 0.4770 0.5066 0.5369
(1/2)4 0.8552 0.6627 0.3952 0.1895 0.2541 0.2726 0.3091
(1/2)5 0.8934 0.7325 0.4770 0.2541 0.1526 0.1527 0.1896
(1/2)6 0.9332 0.7733 0.5066 0.2726 0.1527 0.0571 0.0882
(1/2)7 0.9402 0.7945 0.5369 0.3091 0.1896 0.0882 0.0699
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Table 4. Results of simulation which was described in Example 4

p(a|a) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.0417 0.2584 0.4184 0.5518 0.6715 0.7672 0.8452 0.9107 0.9612
0.2 0.2584 0.0251 0.1945 0.3580 0.4965 0.6172 0.7407 0.8324 0.9100
0.3 0.4184 0.1945 0.0265 0.1794 0.3311 0.4840 0.6211 0.7385 0.8427
0.4 0.5518 0.3580 0.1794 0.0282 0.1764 0.3338 0.4904 0.6191 0.7663
0.5 0.6715 0.4965 0.3311 0.1764 0.0275 0.1748 0.3378 0.4972 0.6689
0.6 0.7672 0.6172 0.4840 0.3338 0.1748 0.0276 0.1890 0.3604 0.5494
0.7 0.8452 0.7407 0.6211 0.4904 0.3378 0.1890 0.0460 0.2036 0.4198
0.8 0.9107 0.8324 0.7385 0.6191 0.4972 0.3604 0.2036 0.0254 0.2511
0.9 0.9612 0.9100 0.8427 0.7663 0.6689 0.5494 0.4198 0.2511 0.0219

Table 5. Results of simulation which was described in Example 5

p(a|a) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.0478 0.2536 0.4017 0.5108 0.5936 0.6645 0.7158 0.7542 0.7941
0.2 0.2536 0.0287 0.1773 0.3021 0.3934 0.4685 0.5353 0.6016 0.6477
0.3 0.4017 0.1773 0.0472 0.1559 0.2478 0.3314 0.4174 0.4840 0.5372
0.4 0.5108 0.3021 0.1559 0.0476 0.1254 0.2172 0.3046 0.3745 0.4342
0.5 0.5936 0.3934 0.2478 0.1254 0.0280 0.1054 0.1956 0.2719 0.3404
0.6 0.6645 0.4685 0.3314 0.2172 0.1054 0.0280 0.1060 0.1827 0.2629
0.7 0.7158 0.5353 0.4174 0.3046 0.1956 0.1060 0.0460 0.1137 0.1928
0.8 0.7542 0.6016 0.4840 0.3745 0.2719 0.1827 0.1137 0.0440 0.1103
0.9 0.7941 0.6477 0.5372 0.4342 0.3404 0.2629 0.1928 0.1103 0.0234

Table 6. Results of simulation which was described in Example 6

p(a|a) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.0502 0.2314 0.3856 0.5153 0.6125 0.7138 0.7942 0.8651 0.9080
0.2 0.2314 0.0539 0.1840 0.3393 0.4603 0.5838 0.6728 0.7479 0.8675
0.3 0.3856 0.1840 0.0301 0.1785 0.3092 0.4368 0.5280 0.6728 0.7980
0.4 0.5153 0.3393 0.1785 0.0672 0.1789 0.3089 0.4376 0.5844 0.7193
0.5 0.6125 0.4603 0.3092 0.1789 0.0470 0.1781 0.3091 0.4594 0.6192
0.6 0.7138 0.5838 0.4368 0.3089 0.1781 0.0658 0.1791 0.3399 0.5245
0.7 0.7942 0.6728 0.5280 0.4376 0.3091 0.1791 0.0256 0.1830 0.3976
0.8 0.8651 0.7479 0.6728 0.5844 0.4594 0.3399 0.1830 0.0425 0.2457
0.9 0.9080 0.8675 0.7980 0.7193 0.6192 0.5245 0.3976 0.2457 0.0588

Example 5. Here we choose p(a|a)=1−p(b|a) where p(a|a)∈{0.1,0.2, . . . ,0.9},
and p(a|b) = p(b|b) = 0.5. In this way we obtain 9 different vectors p1, . . . ,p9.
Table 5 shows estimated values of mathematical expectations of 23-gram distances
�2,3(T 100(pi),T

100(pj )), for 1 � i, j � 9. These estimated values are based on com-
puter simulation of 100 independent copies of T (p) for each p.
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Fig. 1. Histogram from Example 7. Fig. 2. Histogram from Example 7.

Example 6. Here we choose p(a|a) = 1 − p(b|a) = p(b|b) = 1 − p(a|b) where
p(a|a) ∈ {0.1,0.2, . . . ,0.9}. In this way we obtain 9 different vectors p1, . . . ,p9.
Table 6 shows estimated values of mathematical expectations of 23-gram distances
�2,3(T 100(pi),T

100(pj )), for 1 � i, j � 9. These estimated values are based on com-
puter simulation of 100 independent copies of T (p) for each p.

Example 7. We study the value distribution of �2,3(T 7(p),T 7(p′)) defined in Ex-
ample 1. Fig. 1 shows the histogram of the value distribution in the case where p = 0.3
and p′ = 0.4. Fig. 2 shows the histogram of the value distribution in the case where
p = p′ = 0.3. Each histogram is based on 10000 independently generated values of
�2,3(T 7(p),T 7(p′)).

3. Conclusions

In each of the Tables 1–6 the minimum of every row is achieved at the diagonal element
of the table. We conclude that 23-gram distance effectively discriminates between dif-
ferent values of the parameter.

It is interesting to study possible asymptotic distributions of the random variables
�p,q (T k(p),T k(p′)) as well as of the corresponding subtree count vectors N∗.
Empirical evidence based on a small simulation study (Example 7) suggests that
�p,q (T k(p),T k(p′)) is asymptotically normal, for p �= p′, and it is distributed as the
absolute value of a normal random variable, for p = p′. This is not surprising as one
would expect that the number N of subtrees of a bounded size would obey the central
limit theorem.
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REZIUMĖ

M. Bloznelis, I. Radavičius. Empirinis maž ↪u pomedži ↪u skaičiais paremto medži ↪u panašumo mato
tyrimas

Darbe tiriamas žymėt ↪u medži ↪u panašumo matas, paremtas (nedideli ↪u) pografi ↪u skaiči ↪u palyginimu, žr. [1].
Kompiuterinio modeliavimo rezultatai rodo, kad toks panašumo matas efektyviai atskiria atsitiktinius
Galtono–Vatsono medžius.

Raktiniai žodžiai: medži ↪u palyginimas, Galtono–Vatsono medis.


