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Abstract. The value distribution of additive functions defined on the symmetric group with respect to the
Ewens probability is examined. For the number of cycles with restricted lengths, we establish necessary
and sufficient conditions under which the distributions converge weakly to a limit law.
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1. Introduction and result

We examine the distributions of additive functions defined on the symmetric group Sn

with respect to the Ewens probability. The main result gives general conditions under
which the distributions converge weakly to a discrete limit law.

Let σ ∈ Sn be a permutation having kj (σ ) � 0 cycles of length j , 1 � j � n. The
structure vector is defined as k̄(σ ) := (k1(σ ), . . . , kn(σ )) and w(σ) = k1(σ ) + · · · +
kn(σ ) is the number of cycles. The structure vector k̄(σ ) satisfies the relation 1k1(σ )+
· · · + nkn(σ ) = n.

Let us define a probabilistic measure on the symmetric group Sn which is charac-
terized by a parameter � > 0 setting

νn,�({σ }) := �w(σ)/�(n), ∀σ ∈ Sn,

where �(n) = �(�+1) . . . (�+n−1). Then the probability of permutations with the
structure vector k̄ = (k1, . . . , kn) is expressed by the formula

νn,�(k̄(σ ) = k̄) := n!
�(n)

n∏
j=1

(
�

j

)kj 1

kj ! , (1)

where kj � 0,� > 0 and 1k1 + · · · + nkn = n. See, for instance, [1].
As it has been proposed by W. Ewens (1972), the right-hand part of (1) can be

ascribed as a probability to the vector set {k̄ ∈ Zn+: 1k1 + · · · + nkn = n}. Since then,
this probability, called the Ewens Sampling Formula, was widely applied in genetics
(see [1] and the references therein).
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We define a sequence of additive functions: hn: Sn → R. Given a real sequence
{hnj (k)}, 1 � j � n, k � 0, satisfying the condition hnj (0) ≡ 0, we set

hn(σ ) =
n∑

j=1

hnj

(
kj (σ )

)
.

If in addition, hnj (k) = anjk, where anj ∈ R for all k � 1 and 1 � j � n, then hn(σ )

is called completely additive function.
The main problem is to establish general conditions under which the distribution

functions

Vn

(
x;hn,α(n)

) := νn,�

(
hn(σ ) − α(n) < x

)
,

where α(n) ∈ R is a centralizing sequence, converge weakly to a limit distribution
law. Here and afterwards we assume that n → ∞. We can assume that hnj (k) = 0 for
all jk � n.

So far, general results were obtained in the case � = 1 (see [4,7,8]). In par-
ticular, E. Manstavičius [7,8] established necessary and sufficient conditions under
which, for a completely additive function with anj ∈ {0,1}, the distribution function
νn,1(hn(σ ) < x) converges weakly to a limit law. The partial case � > 1 has been
discussed in [3]. We generalize this result for � > 0. It is worth to note that the very
idea of such type results goes back to probabilistic number theory, in particular to
J. Šiaulys’ paper [9].

Under the condition anj ∈ {0,1}, the additive function hn(σ ) is just the number
of cycles with restricted lengths of a random permutation σ ∈ Sn. Upper and lower
bounds for the distribution of this function were obtained in [5].

Apart from the one-dimensional limit laws, the weak convergence of the partial sum
processes defined in terms of additive functions under the Ewens probability has been
examined. In particular, the paper by G.J. Babu and E. Manstavičius [2] deals with the
case of one normalized additive function while the paper [6] concerns the sequences
of such functions but the probability measure is restricted to the case � = 1. The
sufficiency part of our theorem has some intersection with these results. Namely, the
existence of a limit law for Vn(x;hn,0) follows from the result in [6] but, in addition,
we establish the convergence of moments.

We introduce some notation. For convenience, we add the asterisk over the sums to
replace the condition anj = 1, j = j1, . . . , jm, . . . . Denote

γnm,� = �m
∗∑

j1�n

1

j1
. . .

∗∑
jm�n

1

jm

1{j1 + · · · + jm � n} �(n−j1−···−jm)

(n − j1 − · · · − jm)! (2)

and

γ̂nm,� = n!
�(n)

γnm,�.

THEOREM 1. Let hn(σ ) be a sequence of completely additive functions with anj ∈
{0,1} and � > 0. The frequencies Vn(x;hn,0) = νn,�(hn(σ ) < x) converge weakly a
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limit law if and only if there exist finite limits

lim
n→∞ γ̂nm,� =: γ̂m,� (3)

for all m ∈ N. Moreover, if (3) is satisfied, the characteristic function of the limit
distribution is

1 +
∞∑

m=1

γ̂m,�

m!
(
eit − 1

)m
, t ∈ R.

The case � � 1 has been examined in [3]. Some of the proof remains valid in the
general case � > 0, therefore in the present remark we present the complementing
details for 0 < � < 1 only.

2. Proof of theorem

We start with two lemmas. Let En,� be the mean value with respect to the probabili-
ty νn,�. Denote a(r) := a(a − 1) . . . (a − r + 1).

LEMMA 1. Let � > 0,m ∈ N,hn(σ ) be a sequence of completely additive func-
tions with anj ∈ {0,1}, and let γ̂nm,� be defined above. Then

En,�hn(σ )(m) = γ̂nm,� (4)

for all n � 1.

Proof. See in [3].

The next lemma concerns the concentration function estimate. For a completely
additive function hn(σ ), we define

Qn,�(u) = sup
x∈R

νn,�

(|hn(σ ) − x| < u
)
, u � 0,

and anj(λ) = anj − jλ. Denote a ∧ b = min{a,b},

Dn(u;λ) =
∑
j�n

u2 ∧ anj (λ)2

j
, Dn(u) = min

λ∈R
Dn(u;λ).

In what follows, the symbol � is used in the sense of O(·), a 	 b stands for
a � b � a, and c, c0, . . . ,C,C1, . . . denote some positive constants dependent on θ

and other parameters which we shall indicate.

LEMMA 2. We have

Qn,�(u) � uDn(u)−1/2 (5)

with the constant in “�” depending at most on �.
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Proof. See in [3].

Proof of Theorem. Sufficiency. Condition (3) of Theorem implies γ̂n1,� � C < ∞
for all n � 1. We further use (3), (4), and the expansion

En,�eith(σ ) = 1 +
L∑

m=1

γ̂nm,�

m! (eit − 1)m + O

(
γ̂n,L+1,�

(L + 1)! |eit − 1|L+1
)
. (6)

To estimate the reminder, we have to prove that

γ̂nm,� � C1γ̂n,m−1,�, (7)

where C1 does not depend on m � 1. The argument is based upon the following well
known estimate

c
�(n)

n! � (1 + n)�−1 � C2
�(n)

n! (8)

for all n � 1.
We now examine expression (2) of γn,m,θ . For brevity, we denote J = j1 + · · · +

jm−1 and majorise the most inner sum over jm =: j . Using (8) repeatedly, we obtain

�

∗∑
j�n−J

1

j

�(n−J−j)

(n − J − j)!

= �n!
�(n)

∗∑
j�n−J

�(n−j)

j (n − j)!
(

�(n)

n!
(n − j)!
�(n−j)

�(n−J−j)

(n − J − j)!
)

� C2

c2

�n!
�(n)

∗∑
j�n−J

�(n−j)

j (n − j)!
(

1 − j

n + 1

)1−�

(1 + n − J − j)�−1

� C2

c2
γ̂n1,� � C2C

c2
=: C1.

This and (2) prove inequality (7). By induction we now obtain γ̂nm,� � Cm
3 , where

C3 = max {C,C1}. Hence using (3) and (6) we have

En,�eith(σ ) = 1 +
L∑

m=1

γ̂m,�

m!
(
eit − 1

)m + O

(
C3

L

(L + 1)!
)

+ oL(1),

where either of the estimates is uniform in t ∈ R and the second one depends on L � 1.
Taking now n → ∞ and later L → ∞, we complete the proof of convergence of the
characteristic function and find the claimed formula of its limit. This implies the weak
convergence of Vn(x;hn,0).
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Necessity. Let Vn(x;hn,0) converges weakly to a limit distribution P (ξ < x),
where ξ is a random variable taking values in the set Z+. Hence for the concentra-
tion function Qn,�(1) we have

Qn,�(1) 
 max
m∈Z+

P (ξ = m) � c1 > 0,

where the constant c1 depends at most on ξ provided that n is sufficiently large. In
what follows we disregard such dependence. Consequently, by (5) in Lemma 2, we
obtain Dn(1;λ) � 1 with some λ = λn ∈ R. By virtue of anj ∈ {0,1}, this implies

1 

∑

2/|λ|<j�n

1 ∧ (anj − λj)2

j
=

∑
2/|λ|�j�n

1

j
� c0 log(n|λ|)

if λ �= 0, where c0 > 0 and n is sufficiently large. Hence |λ| � C4/n. This and the
relation (x + y)2 � 2(x2 + y2) yield

Dn(1; 0) =
∗∑

j�n

1

j
� Dn(1;λ) +

∑
j�n

1 ∧ (C4j/n)2

j

� 1 + 1

n2

∑
j�n/C4

j +
∑

n/C4<j�n

1

j
� C5 < ∞

for all n � 1. Hence and from (8) we obtain

γ̂n1,� � n1−�

( ∗∑
j�n/2

+
∑

n/2<j�n

)
1
j
(1 + n − j)�−1

� 2C5 + 1

n�

∑
n/2<j�n

(1 + n − j)�−1 � 1

for n � 1. As in the sufficiency part, the induction argument leads to γ̂nm,� � C6
m

and, by Lemma 1, to the inequality

sup
n

En,�hn(σ )(m) � Cm
6

for every m � 1. Consequently, from the weak convergence of distribution functions
frequencies Vn(x;hn,0) we obtain convergence of factorial moments.

Theorem is proved.
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REZIUMĖ

T. Kargina. Atsitiktinio keitinio apribot ↪u cikl ↪u skaičiaus asimptotiniai skirstiniai

Nagrinėjamas adityvi ↪uj ↪ufunkcij ↪u, apibrėžt ↪u simetrinėje grupėje, asimptotini ↪u skirstini ↪u egzistavimas. Kei-
tiniai imami su Evenso tikimybe. Rastos būtinos ir pakankamos s ↪alygos, kai adityvioji funkcija išreiškia
keitinio cikl ↪u su bet kokiais apribojimais skaiči ↪u.

Raktiniai žodžiai: simetrinė grupė, silpnasis konvergavimas, faktorialiniai momentai, moment ↪u konverga-
vimas, Evenso tikimybė.


