On the Green's formula for a Stokes type problem

Mindaugas SKUJUS (MII) *
e-mail: mindaugas.skujus@mif.vu.lt

Abstract. A time-periodic Stokes problem is studied in the domain with cylindrical outlets to infinity. Using the Fourier series the problem is reduced to a sequence of elliptic problem. For each of these elliptic boundary value problems a generalized Green's formula is constructed. The analogous Green's formula for the steady Stokes problem was obtained in [1].

Keywords: cylindrical outlets to infinity, time-periodic Stokes problem, generalized Green's formula.

1. Formulation of the problem

Let $\Omega \subset \mathbb{R}^{3}$ be a domain with cylindrical outlets to infinity, i.e., outside the ball $B_{R}=$ $\left\{x \in \mathbb{R}^{3}:|x| \leqslant R\right\}$ the domain Ω coincides with a system of J semi-infinite cylinders Π_{+}^{j} of a constant cross section ω^{j}. Let $\Pi_{+}^{j} \cap \Pi_{+}^{k}=\emptyset, j \neq k$ and let the boundary $\partial \Omega$ be smooth. We consider in Ω the time-periodic Stokes problem

$$
\begin{align*}
& \mathbf{v}_{t}-v \Delta \mathbf{v}+\nabla p=\mathbf{f}, \quad(x, t) \in \Omega \times(0,2 \pi), \tag{1}\\
& -\nabla \cdot \mathbf{v}=\mathbf{0}, \quad(x, t) \in \Omega \times(0,2 \pi), \tag{2}\\
& \mathbf{v}=\mathbf{0}, \quad(x, t) \in \partial \Omega \times(0,2 \pi), \tag{3}\\
& \mathbf{v}(x, 0)=\mathbf{v}(x, 2 \pi), \quad x \in \Omega . \tag{4}
\end{align*}
$$

We assume that the external force $\mathbf{f}=\left(f_{1}, f_{2}, f_{3}\right)^{t}$ is 2π-time-periodic function. Problem (1)-(4) could be decomposed into a sequence of elliptic problems. Indeed, we can look for the solution to problem (1)-(4) in the form

$$
\begin{align*}
& \mathbf{v}(x, t)=\frac{\mathbf{v}_{c 0}}{2 \pi}+\frac{1}{\pi} \sum_{k=1}^{\infty}\left\{\mathbf{v}_{c k}(x) \cos k t+\mathbf{v}_{s k}(x) \sin k t\right\} \tag{5}\\
& p(x, t)=\frac{p_{c 0}}{2 \pi}+\frac{1}{\pi} \sum_{k=1}^{\infty}\left\{p_{c k}(x) \cos k t+p_{s k}(x) \sin k t\right\} \tag{6}
\end{align*}
$$

[^0]Inserting series (5), (6) into equations and boundary conditions we get for coefficients $\mathbf{v}_{c k}, \mathbf{v}_{s k}, p_{c k}, p_{s k}$ series of the systems of elliptic problems

$$
\begin{cases}k \mathbf{v}_{s k}-v \Delta \mathbf{v}_{c k}+\nabla p_{c k}=\mathbf{f}_{c k}, & x \in \Omega \tag{7}\\ -k \mathbf{v}_{c k}-v \Delta \mathbf{v}_{s k}+\nabla p_{s k}=\mathbf{f}_{s k}, & x \in \Omega \\ -\nabla \cdot \mathbf{v}_{c k}=0,-\nabla \cdot \mathbf{v}_{s k}=0, & x \in \Omega \\ \mathbf{v}_{c k}=\mathbf{0}, \mathbf{v}_{s k}=\mathbf{0}, & x \in \partial \Omega\end{cases}
$$

Here $\mathbf{f}_{c 0} /(2 \pi), \mathbf{f}_{c k} / \pi, \mathbf{f}_{s k} / \pi, k=0,2, \ldots$, are Fourier coefficients of the function $\mathbf{f}=$ $\mathbf{f}(x, t)$.

In this paper we derive so-called generalized Green's formula for problem (7). The analogous Green's formula for the steady Stokes problem was obtained in [1]. The obtained below results are important for the construction of correct asymptotic conditions at infinity which describe real time-periodic physical processes (for example bloodstream).

2. The asymptotics of the solution to problem (7)

Let $x^{j}=\left(x_{1}^{j}, x_{2}^{j}, x_{3}^{j}\right)$ be the local coordinate system related to the cylinder Π_{+}^{j} such that the axis x_{3}^{j} is directed along cylinder axis. We consider problem (7) in a weighted Sobolev space $W_{\beta}^{l}(\Omega)$ which is a closure of $C_{0}^{\infty}(\bar{\Omega})$ (a class of infinitely differentiable functions with compact supports in $\bar{\Omega}$) with respect to the norm

$$
\left\|u ; W_{\beta}^{l}(\Omega)\right\|^{2}=\sum_{|\alpha| \leqslant l} \int_{\Omega} \rho_{\beta}(x)\left|D_{x}^{\alpha} u(x)\right|^{2} \mathrm{~d} x
$$

where ρ_{β} is a smooth positive function on $\bar{\Omega}$ such that $\rho_{\beta}(x)=\exp \left(\beta x_{3}^{j}\right)$ on Π_{+}^{j} \} $B_{R}, j=1, \ldots, J$. If $\beta>0$, elements of this space exponentially vanish as x_{3}^{j} tends to infinity, and they may exponentially grow, if $\beta<0$.

Consider problem (7) in the cylinder Π_{+}^{j}. Using the methods of the book [2] and arguing in the same way as in [1] we obtain four special solutions of the homogeneous problem (7):

$$
\begin{array}{ll}
\mathbf{u}_{c k}^{j 0}=(0,0,0,1,0,0,0,0)^{t}, & \mathbf{u}_{c k}^{j 1}=\left(0,0, \varphi_{k}^{j}, x_{3}^{j}, 0,0,-\psi_{k}^{j}, 0\right)^{t}, \\
\mathbf{u}_{s k}^{j 0}=(0,0,0,0,0,0,0,1)^{t}, & \mathbf{u}_{s k}^{j 1}=\left(0,0, \psi_{k}^{j}, 0,0,0, \varphi_{k}^{j}, x_{3}^{j}\right)^{t}, \tag{9}
\end{array}
$$

where the pair of functions $\left(\varphi_{k}^{j}, \psi_{k}^{j}\right)$ is the unique solution of the problem

$$
\begin{cases}k \psi_{k}^{j}+v \Delta \varphi_{k}^{j}=1, & x^{j^{\prime}}=\left(x_{1}^{j}, x_{2}^{j}\right) \in \omega^{j} \tag{10}\\ k \varphi_{k}^{j}-v \Delta \psi_{k}^{j}=0, & x^{j^{\prime}} \in \omega^{j} \\ \varphi_{k}^{j}=\psi_{k}^{j}=0, & x^{j^{\prime}} \in \partial \omega^{j}\end{cases}
$$

According to Theorem 3.1.4 in [2] the sum of linear combinations of these solutions gives the main term (up to an exponentially vanishing term) of the asymptotic decom-
position of the "growing" at infinity solution. Let $\chi_{j}(x)$ be a smooth cut-off function such that $\operatorname{supp}\left(\chi_{j}\right) \subseteq \Pi_{+}^{j}$ and $\chi_{j}(x)=1$ if $x_{3}^{j}>L$ for $j=1, \ldots, J$.

THEOREM 1. Let $\beta>0$. If $\mathbf{u}_{k}=\left(\mathbf{v}_{c k}, p_{c k}, \mathbf{v}_{s k}, p_{s k}\right) \in \mathcal{D}_{-\beta}^{l} W(\Omega)$ is the solution to problem (7) with the right-hand side $\mathbf{f}_{k}=\left(\mathbf{f}_{c k}, \mathbf{f}_{s k}\right) \in W_{\beta}^{l-1}(\Omega)^{6}$, then

$$
\begin{equation*}
\mathbf{u}_{k}(x)=\sum_{j=1}^{J} \chi_{j}(x)\left\{a_{c k}^{j} \mathbf{u}_{c k}^{j 0}+a_{s k}^{j} \mathbf{u}_{s k}^{j 0}+b_{c k}^{j} \mathbf{u}_{c k}^{j 1}+b_{s k}^{j} \mathbf{u}_{s k}^{j 0}\right\}+\tilde{\mathbf{u}}_{k}, \tag{11}
\end{equation*}
$$

where $\tilde{\mathbf{u}}_{k} \in \mathcal{D}_{\beta}^{l} W(\Omega), a_{c k}^{j}, a_{s k}^{j}, b_{c k}^{j}, b_{s k}^{j} \in \mathbb{C}$. Here $\mathcal{D}_{\beta}^{l} W(\Omega)=W_{\beta}^{l+1}(\Omega)^{6} \times W_{\beta}^{l}(\Omega)^{2}$.

3. Generalized Green's formula

Let $\mathbf{u}_{k}=\left(\mathbf{v}_{c k}, p_{c k}, \mathbf{v}_{s k}, p_{s k}\right), \mathbf{U}_{k}=\left(\mathbf{V}_{c k}, P_{c k}, \mathbf{V}_{s k}, P_{s k}\right) \in C_{0}^{\infty}(\bar{\Omega})$. Integrating twice by parts in Ω one gets the standard Green's formula (see [3])

$$
\begin{align*}
& \left(-v \Delta \mathbf{v}_{c k}+\nabla p_{c k}+k \mathbf{v}_{s k}, \mathbf{V}_{c k}\right)_{\Omega}+\left(-\nabla \cdot \mathbf{v}_{c k}, P_{c k}\right)_{\Omega} \\
& \quad+\left(-v \Delta \mathbf{v}_{s k}+\nabla p_{s k}-k \mathbf{v}_{c k}, \mathbf{V}_{s k}\right)_{\Omega}+\left(-\nabla \cdot\left(-\mathbf{v}_{s k}, P_{s k}\right)_{\Omega}\right. \\
& \quad+\left(\mathbf{v}_{c k}, \mathbf{n} P_{c k}-v \partial_{\mathbf{n}} \mathbf{V}_{c k}\right)_{\partial \Omega}+\left(\mathbf{v}_{s k}, \mathbf{n} P_{s k}-v \partial_{\mathbf{n}} \mathbf{V}_{s k}\right)_{\partial \Omega} \\
& \quad-\left(\mathbf{v}_{c k},-v \Delta \mathbf{V}_{c k}+\nabla P_{c k}-k \mathbf{V}_{s k}\right)_{\Omega}-\left(p_{c k},-\nabla \cdot \mathbf{V}_{c k}\right)_{\Omega} \tag{12}\\
& \quad-\left(\mathbf{v}_{s k},-v \Delta \mathbf{V}_{s k}+\nabla P_{s k}+k \mathbf{V}_{c k}\right)_{\Omega}-\left(p_{s k},-\nabla \cdot \mathbf{V}_{s k}\right)_{\Omega} \\
& \quad-\left(\mathbf{n} p_{c k}-v \partial_{\mathbf{n}} \mathbf{v}_{c k}, \mathbf{V}_{c k}\right)_{\partial \Omega}-\left(\mathbf{n} p_{s k}-v \partial_{\mathbf{n}} \mathbf{v}_{s k}, \mathbf{V}_{s k}\right)_{\partial \Omega}=0,
\end{align*}
$$

here $(,)_{\Omega}$ stands for a scalar product in $L_{2}(\Omega)$. Denoting by $q\left(\mathbf{u}_{k}, \mathbf{U}_{k}\right)$ the left-hand side of the above formula we get

$$
q(\mathbf{u}, \mathbf{U})=q(\mathbf{U}, \mathbf{u})=0
$$

for any $\mathbf{u} \in \mathcal{D}_{\beta}^{l} W(\Omega)$ and $\mathbf{U} \in \mathcal{D}_{-\beta}^{l} W(\Omega)$. Let S be an operator of problem (7) and S^{*} be an operator of the problem

$$
\begin{cases}-k \mathbf{V}_{s k}-v \Delta \mathbf{V}_{c k}+\nabla P_{c k}=\mathbf{F}_{c k}, & x \in \Omega \tag{13}\\ k \mathbf{V}_{c k}-v \Delta \Delta \mathbf{V}_{s k}+\nabla P_{s k}=\mathbf{F}_{s k}, & x \in \Omega \\ -\nabla \cdot \mathbf{V}_{c k}=0,-\nabla \cdot \mathbf{V}_{s} k=0, & x \in \Omega \\ \mathbf{V}_{c k}=\mathbf{0}, \mathbf{V}_{s k}=\mathbf{0}, & x \in \partial \Omega\end{cases}
$$

It is clear that S^{*} is an adjoint operator to S with respect to the Green's formula (12). Note that S is not self-adjoint operator. Homogeneous problem (13) in the cylinder Π_{+}^{j} has four special solutions

$$
\begin{align*}
& \mathbf{U}_{c k}^{j 0}=(0,0,0,1,0,0,0,0)^{t}, \tag{14}\\
& \mathbf{U}_{c k}^{j 1}=\left(0,0, \varphi_{k}^{j}, x_{3}^{j}, 0,0, \psi_{k}^{j}, 0\right)^{t}, \tag{15}\\
& \mathbf{U}_{s k}^{j 0}=(0,0,0,0,0,0,0,1)^{t}, \quad \mathbf{U}_{s k}^{j 1}=\left(0,0,-\psi_{k}^{j}, 0,0,0, \varphi_{k}^{j}, x_{3}^{j}\right)^{t}
\end{align*}
$$

where functions φ_{k}^{j} and ψ_{k}^{j} are defined by formula (10). We denote by $\mathbb{D}_{ \pm \beta}^{l} W(\Omega)$ the subset of functions $\mathbf{u}_{k} \in \mathcal{D}_{-\beta}^{l} W(\Omega)$ having expansion (11) and by $\mathbb{D}_{ \pm \beta}^{l} W(\Omega)^{*}$ the
subset of $\mathcal{D}_{-\beta}^{l} W(\Omega)$ consisting of functions having an expansions

$$
\begin{equation*}
\mathbf{U}_{k}=\sum_{j=1}^{J} \chi_{j}\left\{A_{c k}^{j} \mathbf{U}_{c k}^{j 0}+A_{s k}^{j} \mathbf{U}_{s k}^{j 0}+B_{c k}^{j} \mathbf{U}_{c k}^{j 1}+B_{s k}^{j} \mathbf{U}_{s k}^{j 1}\right\}+\tilde{\mathbf{U}}_{k}, \tag{16}
\end{equation*}
$$

where $\mathbf{U}_{\diamond, k}^{j h}, h \in\{0,1\}, \diamond \in\{c, s\}$, are defined by (14) and (15), $\tilde{\mathbf{U}}_{k} \in \mathcal{D}_{\beta}^{l} W(\Omega)$, $A_{c k}^{j}, A_{s k}^{j}, B_{c k}^{j}, B_{s k}^{j} \in \mathbb{C}$.
Since $\operatorname{supp}\left(\chi_{j}\right) \cap \operatorname{supp}\left(\chi_{l}\right)=\emptyset, j \neq l$, we have

$$
q\left(\chi_{j} \mathbf{u}_{\diamond, k}^{j h}, \chi_{l} \mathbf{U}_{\diamond \diamond, k}^{l m}\right)=0, \quad h, m \in\{0,1\}, \quad \diamond, \diamond \diamond \in\{c, s\}
$$

Using the fact that functions (8), (9) and (14), (15) are exact solutions to homogeneous problems (7) and (13), respectively, we get, after cumbersome computation, that

$$
q\left(\chi_{j} \mathbf{u}_{\diamond, k}^{j h}, \chi_{j} \mathbf{U}_{\diamond \diamond, k}^{j h}\right)=0, \quad h=0,1, \quad \diamond, \diamond \diamond \in\{c, s\}
$$

Inserting representations (11) and (16) into $q\left(\mathbf{u}_{k}, \mathbf{U}_{k}\right)$ we get that a number of terms in $q\left(\mathbf{u}_{k}, \mathbf{U}_{k}\right)$ vanishes and, finally, we find

$$
\begin{aligned}
q\left(\mathbf{u}_{k}, \mathbf{U}_{k}\right)= & \sum_{j=1}^{J}\left\{a_{c k}^{j} \bar{B}_{c k}^{j} q\left(\chi_{j} \mathbf{u}_{c k}^{j 0}, \chi_{j} \mathbf{U}_{c k}^{j 1}\right)+a_{c k}^{j} \bar{B}_{s k}^{j} q\left(\chi_{j} \mathbf{u}_{c k}^{j 0}, \chi_{j} \mathbf{U}_{s k}^{j 1}\right)\right. \\
& +a_{s k}^{j} \bar{B}_{c k}^{j} q\left(\chi_{j} \mathbf{u}_{s k}^{j 0}, \chi_{j} \mathbf{U}_{c k}^{j 1}\right)+a_{s k}^{j} \bar{B}_{s k}^{j} q\left(\chi_{j} \mathbf{u}_{s k}^{j 0}, \chi_{j} \mathbf{U}_{s k}^{j 1}\right) \\
& +b_{c k}^{j} \bar{A}_{c k}^{j} q\left(\chi_{j} \mathbf{u}_{c k}^{j 1}, \chi_{j} \mathbf{U}_{c k}^{j 0}\right)+b_{c k}^{j} \bar{A}_{s k}^{j} q\left(\chi_{j} \mathbf{u}_{c k}^{j 1}, \chi_{j} \mathbf{U}_{s k}^{j 0}\right) \\
& \left.+b_{s k}^{j} \bar{A}_{c k}^{j} q\left(\chi_{j} \mathbf{u}_{s k}^{j 1}, \chi_{j} \mathbf{U}_{c k}^{j 0}\right)+b_{s k}^{j} \bar{A}_{s k}^{j} q\left(\chi_{j} \mathbf{u}_{s k}^{j 1}, \chi_{j} \mathbf{U}_{s k}^{j 0}\right)\right\} .
\end{aligned}
$$

Let us calculate the term $q\left(\chi_{j} \mathbf{u}_{c k}^{j 0}, \chi_{j} \mathbf{U}_{c k}^{j 1}\right)$. We note, firstly, that the cut-off function χ_{j} restricts all considerations to the cylinder Π_{+}^{j}, secondly, that $S\left(\chi_{j} \mathbf{u}_{\diamond, k}^{j h}\right)$ and $S^{*}\left(\chi_{j} \mathbf{u}_{\diamond, k}^{j h}\right)$ have compact supports. Applying the Green's formula (12) in the domain $\Omega_{L}=\left\{x \in \Omega\right.$: if $x \in \Pi_{+}^{j}$ then $\left.x_{3}^{j}<L, j=1, \ldots, J\right\}$ we get an additional integral over the cross-section ω^{j}. Let $\mathbf{n}=(0,0,1)^{t}$ be the outward normal to $\partial \Omega_{L}$ on ω^{j} and $\partial_{3}=\partial \backslash \partial x_{3}^{j}$. Taking into account (8), (9) and (14), (15) we get

$$
\begin{aligned}
q\left(\chi_{j} \mathbf{u}_{c k}^{j 0}, \chi_{j} \mathbf{U}_{c k}^{j 1}\right)= & \left(\mathbf{v}_{c k}^{j 0}, \mathbf{n} P_{c k}^{j 1}-v \partial_{3} \mathbf{V}_{c k}^{j 1}\right)_{\omega^{j}}+\left(\mathbf{v}_{s k}^{j 0}, \mathbf{n} P_{s k}^{j 1}-v \partial_{3} \mathbf{V}_{s k}^{j 1}\right)_{\omega^{j}} \\
& -\left(\mathbf{n} p_{c k}^{j 0}-v \partial_{3} \mathbf{v}_{c k}^{j 0}, \mathbf{V}_{c k}^{j 1}\right)_{\omega^{j}}-\left(\mathbf{n} p_{s k}^{j 0}-v \partial_{3} \mathbf{v}_{s k}^{j 0}, \mathbf{V}_{s k}^{j 1}\right)_{\omega^{j}} \\
= & -\left(1, \varphi_{k}^{j}\right)_{\omega^{j}}
\end{aligned}
$$

The rest terms in the Green's formula could be computed in the same way. Finally, we arrive at

$$
\begin{aligned}
q\left(\mathbf{u}_{k}, \mathbf{U}_{k}\right)= & \sum_{j=1}^{J}\left\{\left(b_{c k}^{j} \bar{A}_{c k}^{j}+b_{s k}^{j} \bar{A}_{s k}^{j}-a_{c k}^{j} \bar{B}_{c k}^{j}-a_{s k}^{j} \bar{B}_{s k}^{j}\right)\left(\varphi_{k}^{j}, 1\right)_{\omega^{j}}\right. \\
& \left.+\left(a_{c k}^{j} \bar{B}_{s k}^{j}+b_{s k}^{j} \bar{A}_{c k}^{j}-b_{c k}^{j} \bar{A}_{s k}^{j}-a_{s k}^{j} \bar{B}_{c k}^{j}\right)\left(\psi_{k}^{j}, 1\right)_{\omega^{j}}\right\}
\end{aligned}
$$

Now we define operators $\pi_{c}^{0}, \pi_{s}^{0}, \pi_{c}^{1}, \pi_{s}^{1}: \mathbb{D}_{ \pm \beta}^{l} W(\Omega) \rightarrow \mathbb{C}^{J}$ (operators π_{c}^{0}, π_{s}^{0}, $\pi_{c}^{1}, \pi_{s}^{1}: \mathbb{D}_{ \pm \beta}^{l} W(\Omega)^{*} \rightarrow \mathbb{C}^{J}$ are defined in the same way) as follows:

$$
\begin{array}{ll}
\pi_{c}^{0} \mathbf{u}=\left(a_{c}^{1}, a_{c}^{2}, \ldots, a_{c}^{J}\right)^{t}, & \pi_{s}^{0} \mathbf{u}=\left(a_{s}^{1}, a_{s}^{2}, \ldots, a_{s}^{J}\right)^{t} \\
\pi_{c}^{1} \mathbf{u}=\left(b_{c}^{1}, b_{c}^{2}, \ldots, b_{c}^{J}\right)^{t}, & \pi_{s}^{1} \mathbf{u}=\left(b_{s}^{1}, b_{s}^{2}, \ldots, b_{s}^{J}\right)^{t}
\end{array}
$$

where the numbers $a_{c}^{j}, a_{s}^{j}, b_{c}^{j}, b_{s}^{j}$ are the coefficients in expansion (11) of the function $\mathbf{u} \in \mathbb{D}_{ \pm \beta}^{l} W(\Omega)$ (in expansion (16) for $\left.\mathbf{U} \in \mathbb{D}_{ \pm \beta}^{l} W(\Omega)^{*}\right)$. Let

$$
c_{k}^{j}=\int_{\omega^{j}} \varphi_{k}^{j} \mathrm{~d} x^{j^{\prime}}, \quad d_{k}^{j}=-\int_{\omega^{j}} \psi_{k}^{j} \mathrm{~d} x^{j^{\prime}}, \quad x^{j^{\prime}}=\left(x_{1}^{j}, x_{2}^{j}\right)
$$

and

$$
\mathcal{C}_{k}=\operatorname{diag}\left\{c_{k}^{1}, c_{k}^{2}, \ldots, c_{k}^{J}\right\}, \quad \mathcal{D}_{k}=\operatorname{diag}\left\{d_{k}^{1}, d_{k}^{2}, \ldots, d_{k}^{J}\right\}
$$

be the $J \times J$ matrices. Taking into account previous results and notations we get the following formula

$$
\begin{align*}
q\left(\mathbf{u}_{k}, \mathbf{U}_{k}\right)= & \left\langle\mathcal{C}_{k} \pi_{c}^{1} \mathbf{u}_{k}-\mathcal{D}_{k} \pi_{s}^{1} \mathbf{u}_{k}, \pi_{c}^{0} \mathbf{U}_{k}\right\rangle_{J}+\left\langle\mathcal{C}_{k} \pi_{s}^{1} \mathbf{u}_{k}+\mathcal{D}_{k} \pi_{c}^{1} \mathbf{u}_{k}, \pi_{s}^{0} \mathbf{U}_{k}\right\rangle_{J} \\
& -\left\langle\pi_{c}^{0} \mathbf{u}_{k}, \mathcal{C}_{k} \pi_{c}^{1} \mathbf{U}_{k}+\mathcal{D}_{k} \pi_{s}^{1} \mathbf{U}_{k}\right\rangle_{J}-\left\langle\pi_{s}^{0} \mathbf{u}_{k}, \mathcal{C}_{k} \pi_{s}^{1} \mathbf{U}_{k}-\mathcal{D}_{k} \pi_{c}^{1} \mathbf{U}_{k}\right\rangle_{J} \tag{17}
\end{align*}
$$

where \langle,\rangle_{J} stands for a scalar product in \mathbb{C}^{J}. We call (17) the generalized Green's formula.

References

1. S.A. Nazarov and K. Pileckas. Asymptotic conditions at infinity for the Stokes and Navier-Stokes problems in domains with cylindrical outlets to infinity, Quaderni di Matematica, Advances in Fluid Dynamics, 4, 32-132 (1999).
2. S.A. Nazarov and B.A. Plamenevskii. Elliptic Boundary Value Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter and Co, Berlin (1994).
3. J.L. Lions and E. Magenes. Nonhomogeneous Boundary Value Problems, Springer Verlag, Berlin (1972).

REZIUMĖ

M. Skujus. Apie Gryno formulę vienam Stokso tipo uždaviniui

Laiko atžvilgiu periodinis Stokso uždavinys begalinių cilindrų sistemoje Furjè eilučių pagalba suvedamas i̇ elipsinių uždavinių seką. Šiems Stokso tipo kraštiniams uždaviniams ịvedama apibendrintoji Gryno formulè.

Raktiniai žodžiai: begalinių cilindrų sistema, laiko atžvilgiu periodinis Stokso uždavinys, apibendrintoji Gryno formulè.

[^0]: *This work was partly supported by the Lithuanian Science Council Student Research Fellowship Award.

