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Abstract. A non-transitive distributed knowledge logig, D, obtained from multi-modal logid@;,, by

adding distributed knowledge operator, is coesetl. Sound and complete loop-check-free sequent cal-
culus for this logic is proposed. Termination of derivations in proposed calculus is justified.
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1. Introduction

To consider properties of distributed systems logics of knowledge with distributed
knowledge operator were introduced. The decidability (based on finite model proper-
ty) and the completeness (based on Hilbert-style calculi) of logics with distributed
knowledge was proved in [1]. Distributed knowledge, sometimes also called “implicit
knowledge”, cannot be defined in terms of “everybody knows” or common know-
ledge [1]. Intuitively, distributed knowledge is the knowledge that can be obtained
when the agents (from somgent group) pool their knowledge. If we have only one
agent the distributed knowledge reduces to knowledge.

A proof that suitable logical calculus (e.g., sequent or tableaux calculus) allows us
to get a decision procedure is crucial but it is not enough. Check of termination of a
decision procedure is very important problem and sometimes require serious efforts.

Traditional techniques used to ensure termination of a decision procedure in non-
classical (e.g., knowledge-based) sequent (and tableau) calculi is badedpan
check[2]. Namely, before applying any rule it is checked if this rule was already
applied to “essentially the same” sequent; if this is the case we block the application
of the rule. However, loop-check method often leads to an inefficient implementation.
Therefore unrestricted loop-check is often considered as useless. In [3] efficient loop-
check for modal logics4, tense logicK;, and a fragment of intuitionistic logic was
presented using sequents with two halves and extended by the notion of a history. For
modal logicT loop-check-free sequent calculus is presented in [3] using sequents with
two halves.

In this paper non-transitive distributed knowledge logi® (obtained from multi-
modal logicT,, by adding distributed knowledge operator) is considered. In the paper a
loop-check-free sequent calculus thstributed knowledge logi€, D is constructed.

This calculus does not require sequents in a certain normal form and does not use
sequents with two halves. To avoid loop-check, applications of reflexivity rules are re-
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stricted using marked knowledge and distributed knowledge operators. More efficient
loop-check-free specialization of reflexivity rules, different from [4] is presented.

2. Initial Gentzen-style calculusfor thelogic T,, D

The logicT,, D is obtained from the multi-modal logiE, by adding distributed knowl-
edge operatoD.

A language of this logic contains: a s$eof propositional symbolsP, Py,

Py, ..., 0,01, 0o,...; aset of agent constantsiy, io,... (i,i; € {1,...,n}); a set
of knowledge operator& 1, Ko, ..., K,,; the distributed knowledge operatbr, the
set of logical symbols, A, v, —.

Formulasare defined in traditional way fronrgpositional symbda using logical
symbols, knowledge operatofs;, i € {1,...,n}, and distributed knowledge opera-
tor D.

The formulaK; A means “agent knows A”. The formulaDA means 4 is dis-
tributed knowledge of all set (group) of agents”. Distributed knowledge is the knowl-
edge that is implicitly present in a group of agents, and which might become explicit if
the agents were able to communicate. For instance, it is possible that no agent knows
the assertiorQ, while at the same tim® Q may be derived fronK 1 P A Ko(P D Q).

We have distributed knowledge ¢fif, putting our knowledge togethe® may be de-
duced, even if none of us individually kno@s

Knowledge operator;, i € {1,...,n} and distributed knowledge operatbrfor
the logicT,, D satisfy relations which comply with reflexivity property. The semantics
of these operators is defined using Kripke structure (see, e.qg., [1]).

In Gentzen-style calculus for the considered logic instead of formulas we con-
sider sequents, i.e., formal expressiohs..., Ay — B1,..., B,, whereAq, ..., A;

(B1, ..., By) is a multiset of formulas.

Let us introduce a Gentzen-style calculdg;, D for the logicT,, D. The calculus
GT,D is defined by the following postulates:

Axiom: I', P — A, P whereP is a propositional symbol.

Logical rules: traditional invertible rules for logical symbots, A, v, —.

Modal rules: rules for knowledge operatots; and distributed knowledge opera-
tor D

IM,A K, A—> A [1,A, DA —> A
=  (K;j>»>) —— " (D-),
I, KiA— A [1, DA — A
r—- A r—- A
(Kp) (D),
I, K, > A, KA I, DI - A, DA
r— A
),

I, KI' - A, DA

where in the rulegK;), (D) OT (Q € {K;, D}) means either empty word or multiset
of formulasQA4, ..., QA,, (m > 1);in the rule(I) KI" means either empty word or
multiset of formulask1I'y, ..., K, I, (n > 1) whereK ;T"; means either empty word
or multiset of formulask ; By, ..., KBy (q; = 1). The rules(K; —) and (D —)
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are called reflexivity rules because they copa®d to reflexivity axioms; the rules
(K;) and (D) are called distributivity rules because they cop@¥ to distributivity
axioms; the rulg[) is called interaction rule and it corresponds to interaction axiom
KiAD DA, (i=1,...,n).

Analogously as in [4] we get

THEOREM 1. The calculusGT, D is sound and complete.

3. Loop-check-free sequent calculus for T, D

With a view to get stopping device different from loop checking let us introduce
marked knowledge operatods* and marked distributed knowledge operalft
which allow us to get loop-check-free reflexivity rules.

A sequentS is aprimary one, if S is of the following shape:

Y1, KT, D°T11 — 9, KA, DI, whereo € {@, %} and for every (i € {1,2})

—3; is empty or consists of propositional symbols;

— KT is empty or consists of formulas of the shagpg A;

— D?1I14 is empty or consists of formulas of the shap€B;

— KA is empty or consists of formulas of the shageV;

— DI, is empty or consists of formulas of the shap#/'.

Let G1T,, D be a calculus obtained from the calcultig), D by the following trans-
formations:

e replacing the reflexivity ruleéK; —) and(D —) by the following ones:

Y1, KT, D°IT, A, KfA—) )
Y1, KT, D°I1, K; A — 3o
Y1, K°T, D°I1, A, D*A — o
Y1, KT, D°I1, DA — %>
where in the conclusion of the rulé@* —) (Q € {K;, D}) 1N X5 is empty and the
operatorQ in the formulaQ A is not marked;
e replacing the ruleg¢K;), (D), and([)) by the following rules where the conclu-
sion is a primary sequent arxj N X, is empty:
Fl.o — A
Y1, KT, D°I11 — X2, KA, K; A, DII»
wherei e (1,...,n}; KT'=K{I',..., KT, and K;fr‘j(j e{l,...,n}) is empty
or consists of formulas of the shapge? B; if K°T" containsK?T; thenI'? is T;
otherwisel'? is empty.

(Ki =),

(D" —),

(KD,

[,I;— A
Y1, KT, D°I11 — 25, KA, DI, DA
Let us note that in the calculus,7, D applications of the rulesK? —) and

(D* —) are restricted in such way that it is not possible to apply these rule twice
using the same occurrence of a formula as main formula.

(10).
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From the shape of primary sequent, invertibility of the logical and reflexivity rules
we get

LeEmmA 1 (reduction to primary sequentsiEvery sequen$ can be reduced to a
set of primary sequentssy, ..., S}, m > 1, by applying the logical and reflexivity
rules ofG1T,, D backwards. Moreover, 17, D -V S thenforallj (j €{1,...,m})
GiT,DFVi S;.

A primary sequent of the shapg, K*T", D*IT — X, whereX; N X, is empty and
K*I" (D*II) is empty or consist of formulas of the shagg M (D*M, correspond-
ingly), is afinal one. It is impossible to apply any rule to final sequent.

A derivationV of a sequens in the calculusG1T, D is asuccessfubne, if each
branch ofV ends with an axiom. A derivatiolr of S in the calculusG,7,,D is an
unsuccessfubne if V contains a branch ending with a final sequent. A segSest
derivablein the calculusG1T, D if and only if there existsa successful derivatiol
of S. Thus, ifall possiblederivations ofS in G17,, D are unsuccessful, the sequént
is non-derivable

Analogously as in [4] we get

THEOREM 2. If GT,D + S thenG1T,D I S.

4. Termination of derivationsin G1T,D

Let us describe a loop-check-free algorithm with restricted backtracking for backward
proof search irG17,,D.

LEMMA 2 (existential invertibility of the ruIeSK{’) and(1?)). Let S be a primary
sequentzy, KT, D°T11 — X5, KA, DIIy such thatX; N X, is empty andK A U
DII, is not empty. LeG1T,,D + S, then

— there exists a formul&; A; from K A such thatG,7,,D -T; — A;;

— or there exists a formul®A from DI, such thatG,7,D + T, 1 — A.

Proof. The proof is carried out by induction on the height of the given derivation
of the sequens.

Relying on the calculu& 1T, D, definition of derivability inG17,, D, Lemmas 1, 2,
and using invertibility of the logical rules and reflexivity rules we get that the decision
algorithm consists of several levels. Each level contains three main parts:

o the considered sequesitis reduced to a set of primary sequents;

o the obtained set of primary sequents is checked. If the considered primary sequent
is an axiom then the considered branch of derivation is finished and a derivation of the
next primary sequent is constructed;

o if the considered primary sequent is not an axiom then, according to Lemma 2,
ruIes(K{’) and(1/) are backward applied (in all possible ways). The premise of this
application is used to start a new level of algorithm.
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Thus a derivation inG1T, D consists of repeating reductions to primary sequents
and following backward application of one-in-two rulelsf’), (17) to each received
primary sequent. It is obvious that algorithm finishes a search when either in all
branches an axiom is obtained or in all possible derivations a final sequent is obtained.

With the aim to prove termination of presented algorithrooaplexityof deriv-
ability of a sequentS in G17,,D is considered. LeB be a formula entering ir$.

A subformula of B is a modalone if it has the shap®*“M where QO € {K;, D}
andu € {&, *}. A modal subformula?* M may occur both positively and negatively
in B. The complexityof sequentS (denoted byC(S)) is defined as an ordered triple
< k(S),n(S),1(S) > where

e k(S) is the number of different modal subformulas of the shap¥ (Q €
{K;, D}) entering inS positively

e n(S) is the number of different modal subformulas of the shgp¥ (i.e., the
outmost operator ifQ M is not marked) entering i and such that at least one oc-
currence ofQ M enters inS negativelyanddoes not occur within the scope of marked
operatorQ* (Q € {K;, D} (it means that if a considered modal subformula entefs in
negatively and occumsnly within the scope of marked operators then this subformula
is not counted);

e [(S) is the length ofS defined ast.‘:ll(Bi), wherel(B;) is the length (defined
in a traditional way) of-th (1< i < k) member of a sequenst

LEMMA 3. Let G1T,D Y $*, and (j) is a rule of the calculusG17, D. Let a
sequentS be a conclusion of an application of the rulg) in V and S1 be a premise
of the same application of the rulg). ThenC (S1) < C(S).

Proof. If (j) is a logical rule therk(S1) = k(S), n(S1) = n(S) buti(S1) < I(S). If
(j) = (Q* =) (Q* € {K}, D*}) thenn(S1) < n(S). If (j) = (QF) (QF € (K}, 1F}
thenk(S1) < k(S). Thus, in all case€ (S1) < C(S).
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REZIUME
A. Pliuskevciere. Cikly tikrinimo eliminavimas paskirstyto zinojimo netranzityviai logikai

Sukonstruotas korektiSkas ir pilnas beciklis sekvenciniscikaimas netranzityviai paskirstyto zinojimo
logikai. Cikly tikrinimo eliminavimui yra siloma efektyvi refleksyvumo taisykiispecializacija. Paggtas
iSvedimy pateiktame skaiavime baigtinumas.

Raktiniai ZodZiaizinojimo logika, paskirstytas zinojimas, sekvencinis skaiimas, cikl tikrinimas.



