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Abstract. A non-transitive distributed knowledge logicTnD, obtained from multi-modal logicTn by
adding distributed knowledge operator, is considered. Sound and complete loop-check-free sequent cal-
culus for this logic is proposed. Termination of derivations in proposed calculus is justified.
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1. Introduction

To consider properties of distributed systems logics of knowledge with distributed
knowledge operator were introduced. The decidability (based on finite model proper-
ty) and the completeness (based on Hilbert-style calculi) of logics with distributed
knowledge was proved in [1]. Distributed knowledge, sometimes also called “implicit
knowledge”, cannot be defined in terms of “everybody knows” or common know-
ledge [1]. Intuitively, distributed knowledge is the knowledge that can be obtained
when the agents (from some agent group) pool their knowledge. If we have only one
agent the distributed knowledge reduces to knowledge.

A proof that suitable logical calculus (e.g., sequent or tableaux calculus) allows us
to get a decision procedure is crucial but it is not enough. Check of termination of a
decision procedure is very important problem and sometimes require serious efforts.

Traditional techniques used to ensure termination of a decision procedure in non-
classical (e.g., knowledge-based) sequent (and tableau) calculi is based onloop-
check [2]. Namely, before applying any rule it is checked if this rule was already
applied to “essentially the same” sequent; if this is the case we block the application
of the rule. However, loop-check method often leads to an inefficient implementation.
Therefore unrestricted loop-check is often considered as useless. In [3] efficient loop-
check for modal logicsS4, tense logicKt , and a fragment of intuitionistic logic was
presented using sequents with two halves and extended by the notion of a history. For
modal logicT loop-check-free sequent calculus is presented in [3] using sequents with
two halves.

In this paper non-transitive distributed knowledge logicTnD (obtained from multi-
modal logicTn by adding distributed knowledge operator) is considered. In the paper a
loop-check-free sequent calculus fordistributed knowledge logicTnD is constructed.
This calculus does not require sequents in a certain normal form and does not use
sequents with two halves. To avoid loop-check, applications of reflexivity rules are re-
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stricted using marked knowledge and distributed knowledge operators. More efficient
loop-check-free specialization of reflexivity rules, different from [4] is presented.

2. Initial Gentzen-style calculus for the logic T nD

The logicTnD is obtained from the multi-modal logicTn by adding distributed knowl-
edge operatorD.

A language of this logic contains: a set of propositional symbolsP,P1,

P2, . . . ,Q,Q1,Q2, . . .; a set of agent constantsi, i1, i2, . . . (i, il ∈ {1, . . . ,n}); a set
of knowledge operatorsK1, K2, . . . , Kn; the distributed knowledge operatorD; the
set of logical symbols⊃, ∧, ∨, ¬.

Formulasare defined in traditional way from propositional symbols using logical
symbols, knowledge operatorsKi , i ∈ {1, . . . ,n}, and distributed knowledge opera-
tor D.

The formulaKiA means “agenti knowsA”. The formula DA means “A is dis-
tributed knowledge of all set (group) of agents”. Distributed knowledge is the knowl-
edge that is implicitly present in a group of agents, and which might become explicit if
the agents were able to communicate. For instance, it is possible that no agent knows
the assertionQ, while at the same timeDQ may be derived fromK1P ∧ K2(P ⊃ Q).
We have distributed knowledge ofQ if, putting our knowledge together, Q may be de-
duced, even if none of us individually knowsQ.

Knowledge operatorsKi , i ∈ {1, . . . ,n} and distributed knowledge operatorD for
the logicTnD satisfy relations which comply with reflexivity property. The semantics
of these operators is defined using Kripke structure (see, e.g., [1]).

In Gentzen-style calculus for the considered logic instead of formulas we con-
sider sequents, i.e., formal expressionsA1, . . . ,Ak →B1, . . . ,Bm whereA1, . . . ,Ak

(B1, . . . ,Bm) is a multiset of formulas.
Let us introduce a Gentzen-style calculusGTnD for the logicTnD. The calculus

GTnD is defined by the following postulates:
Axiom: �,P → �,P whereP is a propositional symbol.
Logical rules: traditional invertible rules for logical symbols⊃, ∧, ∨, ¬.
Modal rules: rules for knowledge operatorsKi and distributed knowledge opera-

tor D

�,A, KiA → �

�, KiA → �
(Ki →)

�,A, DA → �

�, DA → �
(D →),

� → A

�, Ki� → �, KiA
(Ki)

� → A

�, D� → �, DA
(D),

� → A

�, K� → �, DA
(I),

where in the rules(Ki ), (D) Q� (Q ∈ {Ki , D}) means either empty word or multiset
of formulasQA1, . . . ,QAm (m � 1); in the rule(I) K� means either empty word or
multiset of formulasK1�1, . . . , Kn�n (n � 1) whereKj�j means either empty word
or multiset of formulasKjB1, . . . , KjBqj

(qj � 1). The rules(Ki →) and (D →)
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are called reflexivity rules because they correspond to reflexivity axioms; the rules
(Ki ) and(D) are called distributivity rules because they correspond to distributivity
axioms; the rule(I) is called interaction rule and it corresponds to interaction axiom
KiA ⊃ DA, (i = 1, . . . ,n).

Analogously as in [4] we get

THEOREM 1. The calculusGTnD is sound and complete.

3. Loop-check-free sequent calculus for T nD

With a view to get stopping device different from loop checking let us introduce
marked knowledge operatorsK∗

i and marked distributed knowledge operatorD∗
which allow us to get loop-check-free reflexivity rules.

A sequentS is aprimary one, ifS is of the following shape:
�1, Kσ�, Dσ�1 → �2, K�, D�2, whereσ ∈ {∅,∗} and for everyi (i ∈ {1,2})
– �i is empty or consists of propositional symbols;
– Kσ� is empty or consists of formulas of the shapeKσ

l A;
– Dσ �1 is empty or consists of formulas of the shapeDσ B;
– K� is empty or consists of formulas of the shapeKlM;
– D�2 is empty or consists of formulas of the shapeDN .
Let G1TnD be a calculus obtained from the calculusGTnD by the following trans-

formations:
• replacing the reflexivity rules(Ki →) and(D →) by the following ones:

�1, Kσ�, Dσ �,A, K∗
i A → �2

�1, Kσ�, Dσ�, KiA → �2
(K∗

i →),

�1, Kσ�, Dσ �,A, D∗A → �2

�1, Kσ�, Dσ�, DA → �2
(D∗ →),

where in the conclusion of the rules(Q∗ →) (Q ∈ {Ki , D}) �1 ∩�2 is empty and the
operatorQ in the formulaQA is not marked;

• replacing the rules(Ki), (D), and(I)) by the following rules where the conclu-
sion is a primary sequent and�1 ∩ �2 is empty:

�◦
i
→ A

�1, Kσ�, Dσ�1 → �2, K�, KiA, D�2
(Kp

i ),

where i ∈ {1, . . . ,n}; Kσ� = Kσ
1�1, . . . , Kσ

n�n and Kσ
j �j (j ∈ {1, . . . ,n}) is empty

or consists of formulas of the shapeKσ
j B; if Kσ� contains Kσ

i �i then �◦
i is �i

otherwise�◦
i is empty.

�,�1 → A

�1, Kσ�, Dσ �1 → �2, K�, D�2, DA
(I

p
c ).

Let us note that in the calculusG1TnD applications of the rules(K∗
i →) and

(D∗ →) are restricted in such way that it is not possible to apply these rule twice
using the same occurrence of a formula as main formula.
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From the shape of primary sequent, invertibility of the logical and reflexivity rules
we get

LEMMA 1 (reduction to primary sequents).Every sequentS can be reduced to a
set of primary sequents{S1, . . . ,Sm}, m � 1, by applying the logical and reflexivity
rules ofG1TnD backwards. Moreover, ifG1TnD 	V S then for allj (j ∈ {1, . . . ,m})
G1TnD 	Vj Sj .

A primary sequent of the shape�1, K∗�, D∗� → �2 where�1 ∩�2 is empty and
K∗� ( D∗�) is empty or consist of formulas of the shapeK∗

i M ( D∗M, correspond-
ingly), is afinal one. It is impossible to apply any rule to final sequent.

A derivationV of a sequentS in the calculusG1TnD is asuccessfulone, if each
branch ofV ends with an axiom. A derivationV of S in the calculusG1TnD is an
unsuccessfulone if V contains a branch ending with a final sequent. A sequentS is
derivablein the calculusG1TnD if and only if there existsa successful derivationV
of S. Thus, ifall possiblederivations ofS in G1TnD are unsuccessful, the sequentS

is non-derivable.
Analogously as in [4] we get

THEOREM 2. If GTnD 	 S thenG1TnD 	 S.

4. Termination of derivations in G1T nD

Let us describe a loop-check-free algorithm with restricted backtracking for backward
proof search inG1TnD.

LEMMA 2 (existential invertibility of the rules(Kp
i ) and(I

p
c )). Let S be a primary

sequent�1, Kσ�, Dσ �1 → �2, K�, D�2 such that�1 ∩ �2 is empty andK� ∪
D�2 is not empty. LetG1TnD 	 S, then

– there exists a formulaKiAi from K� such thatG1TnD 	 �i → Ai ;
– or there exists a formulaDA from D�2 such thatG1TnD 	 �,�1 → A.

Proof. The proof is carried out by induction on the height of the given derivation
of the sequentS.

Relying on the calculusG1TnD, definition of derivability inG1TnD, Lemmas 1, 2,
and using invertibility of the logical rules and reflexivity rules we get that the decision
algorithm consists of several levels. Each level contains three main parts:

• the considered sequentS is reduced to a set of primary sequents;
• the obtained set of primary sequents is checked. If the considered primary sequent

is an axiom then the considered branch of derivation is finished and a derivation of the
next primary sequent is constructed;

• if the considered primary sequent is not an axiom then, according to Lemma 2,
rules(Kp

i ) and(I
p
c ) are backward applied (in all possible ways). The premise of this

application is used to start a new level of algorithm.
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Thus a derivation inG1TnD consists of repeating reductions to primary sequents
and following backward application of one-in-two rules(Kp

i ), (I
p
c ) to each received

primary sequent. It is obvious that algorithm finishes a search when either in all
branches an axiom is obtained or in all possible derivations a final sequent is obtained.

With the aim to prove termination of presented algorithm acomplexityof deriv-
ability of a sequentS in G1TnD is considered. LetB be a formula entering inS.
A subformula ofB is a modal one if it has the shapeQµM whereQ ∈ {Ki , D}
andµ ∈ {∅,∗}. A modal subformulaQµM may occur both positively and negatively
in B. Thecomplexityof sequentS (denoted byC(S)) is defined as an ordered triple
< k(S),n(S), l(S) > where

• k(S) is the number of different modal subformulas of the shapeQM (Q ∈
{Ki , D}) entering inS positively;

• n(S) is the number of different modal subformulas of the shapeQM (i.e., the
outmost operator inQM is not marked) entering inS and such that at least one oc-
currence ofQM enters inS negativelyanddoes not occur within the scope of marked
operatorQ∗ (Q ∈ {Ki , D} (it means that if a considered modal subformula enters inS

negatively and occursonlywithin the scope of marked operators then this subformula
is not counted);

• l(S) is the length ofS defined as
∑k

i=1 l(Bi), wherel(Bi) is the length (defined
in a traditional way) ofi-th (1� i � k) member of a sequentS.

LEMMA 3. Let G1TnD 	V S∗, and (j ) is a rule of the calculusG1TnD. Let a
sequentS be a conclusion of an application of the rule(j ) in V andS1 be a premise
of the same application of the rule(j ). ThenC(S1) < C(S).

Proof. If (j ) is a logical rule thenk(S1) = k(S), n(S1) = n(S) but l(S1) < l(S). If
(j ) = (Q∗ →) (Q∗ ∈ {K∗

i , D∗}) thenn(S1) < n(S). If (j ) = (Qp) (Qp ∈ {Kp
i , I

p
c }

thenk(S1) < k(S). Thus, in all casesC(S1) < C(S).
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REZIUMĖ

A. Pliuškevičienė. Cikl ↪u tikrinimo eliminavimas paskirstyto žinojimo netranzityviai logikai

Sukonstruotas korektiškas ir pilnas beciklis sekvencinis skaiˇciavimas netranzityviai paskirstyto žinojimo
logikai. Cikl ↪u tikrinimo eliminavimui yra si¯uloma efektyvi refleksyvumo taisykli↪u specializacija. Pagr↪istas
išvedim↪u pateiktame skaiˇciavime baigtinumas.

Raktiniai žodžiai: žinojimo logika, paskirstytas žinojimas, sekvencinis skaiˇciavimas, cikl↪u tikrinimas.


