Quasi-lattice distributions analysis

Algimantas BIKELIS (VU)

e-mail: marius@post.omnitel.net

Abstract. In this work we define quasi lattice distributions functions.

Keywords: almost periodical function, rational basis.

THEOREM 1 (Besicovitch, 1932). In order that any trigonometrical series

$$\sum_{n} a_n e^{i\lambda_n x}$$

should be the Fourier series for almost periodical function it is necessary and sufficient the convergence of the series

$$\sum_{n} |a_n|^2.$$

From this theorem we can conclude that characteristic function f(t) of the discret random variable ξ

$$f(t) = \sum_{\nu=1}^{\infty} e^{it\Lambda_{\nu}} P\{\xi = \Lambda_{\nu}\}$$

is almost periodical [1–4].

The set of the values of the random variable ξ we will use the notation $\Lambda = \{\Lambda_1, \Lambda_2, \ldots\}$.

DEFINITION 1. Finite or countable set of real numbers $\beta = (\beta_1, \beta_2, \dots, \beta_n, \dots)$ is called linearly independent over the set of rational numbers if for every k it is true the equality

$$r_1\beta_1 + r_2\beta_2 + \dots + r_k\beta_k = 0,$$

with r_1, r_2, \ldots, r_n – rational numbers, implies that all r_1, r_2, \ldots, r_n are zeroes.

Remark 1. There are no zeroes between

$$\beta_1, \beta_2, \ldots, \beta_n, \ldots$$

Remark 2. The basis $\beta = (\beta_1, \beta_2, \dots, \beta_n)$ will be called finite, if the set has finite number of elements, otherwise β will be called infinite.

DEFINITION 2. Finite or countable set of the linearly independent real numbers $\beta_1, \beta_2, \ldots, \beta_n, \ldots$ is called by rational basis of the countable set of real numbers $\Lambda_1, \Lambda_2, \ldots, \Lambda_n, \ldots$, if the every number Λ_n may be represented by linear combination of β_i with rational coefficients, i.e.,

$$\Lambda_n = r_{i_1}^{(n)} \beta_{i_1} + \dots + r_{i_m}^{(n)} \beta_{i_m}, \tag{1}$$

where $i_1 \neq ... \neq i_m$, $r_j^{(n)}$ – rational numbers.

The set of numbers $\Lambda_1, \Lambda_2, \ldots, \Lambda_n, \ldots$ has many rational bases. If it is chosen one of them, for example $\beta_1, \beta_2, \ldots, \beta_n, \ldots$ then the relation (1) is unique.

PRESUMPTION 1 (Bohr, 1932). Every set of real numbers $\Lambda_1, \Lambda_2, ..., \Lambda_n, ...$ has a rational basis β [2].

Remark 3. If all $r_i = 0, \pm 1, \pm 2, ...$, then the basis is called by integer basis.

Remark 4 (Bohr, 1932). All finite set of real numbers $\Lambda_1, \Lambda_2, \dots, \Lambda_N, \dots$ has a finite integer basis $\beta_1, \beta_2, \dots, \beta_k$, i.e.,

$$\Lambda_j = \nu_1^{(j)} \beta_1 + \nu_2^{(j)} + \dots + \nu_k^{(j)} \beta_k,$$

where $v_i^{(j)} = 0, \pm 1, \pm 2, \dots$

If the random variable ξ is defined in the finite probability space $\{\Omega, \mathcal{A}, P\}$ (see [5], p. 32–33), then the set of his values $\Lambda_1, \Lambda_2, \ldots, \Lambda_m$ and there exists an integer basis

$$\vec{\beta} = (\beta_1, \beta_2, \dots, \beta_k)$$

such that

$$\Lambda_j = (\vec{a}, \vec{E}) + (\vec{v}_j, \vec{\beta}), \quad j = 1, 2, \dots, m,$$

where $\vec{a} \in R^k$, $\vec{E} = (1, 1, ..., 1) \in R^k$, $\vec{v}_j = (v_{1j}, ..., v_{kj})$, $v_{ij} = 0, \pm 1, \pm 2, ...$, $\beta_i > 0$, $(\vec{v}_j, \vec{\beta})$ – a scalar product.

In the \vec{k} -dimensional Euclidean space we define the random vector $\vec{\eta}$ in such way:

$$P\{\vec{\eta}=\vec{a}+\vec{v}_j\vec{\beta}\}=P\big\{\xi=(\vec{a},\vec{E})+(\vec{v}_j,\vec{\beta})\big\},$$

where j = 1, 2, ..., m, $\vec{v}_j \vec{\beta} = (v_{1j}\beta_1, v_{2j}\beta_2, ..., v_{kj}\beta_k)$. The random vector $\vec{\eta}$ is lattice and

$$P\{\xi = (\vec{a}, \vec{E}) + (\vec{v}_j, \vec{\beta})\} = \frac{\beta_1, \dots, \beta_k}{(2\pi)^{k/2}} \int_{-\frac{\pi}{\beta_1}}^{\frac{\pi}{\beta_1}} \dots \int_{-\frac{\pi}{\beta_k}}^{\frac{\pi}{\beta_k}} e^{-i(\vec{t}, \vec{v}_j \vec{\beta})} M e^{i(\vec{t}, \vec{\eta})} d\vec{t},$$

where the characteristic function of $\vec{\eta}$ is $Me^{i(\vec{t},\vec{\eta})}$ [4].

378 A. Bikelis

DEFINITION 3. A discrete finite generalized measure μ is called *m*-quasi-lattice if it has the integer finite basis $\vec{\beta}$ consisting of *m* elements.

It is worth to arrange the elements of basis $\beta = (\dots, \beta_m^-, \dots, \beta_2^-, \beta_1^-, \beta_1^+, \beta_2^+, \dots, \beta_n^+, \dots)$ in increasing order, i.e., $\dots < \beta_m^- < \dots < \beta_2^- < \beta_1^- < 0 < \beta_1^+ < \beta_2^+ < \dots < \beta_n^+ < \dots$ Let $\beta^m = \beta \times \dots \times \beta$ be a Cartesian product of m sets β . We split the set $\Lambda = \{\Lambda_1, \Lambda_2 \dots\}$ into $\mathcal{M}(\mathcal{M} \leq \infty)$ disjoint sets, in such way that all numbers $r_{i_1}^{(n)}, r_{i_2}^{(n)}, \dots, r_{i_m}^{(n)}$ in the decomposition (1) are non-zeroes (except, maybe, the case m = 1) for all Λ_n included in m-th subset. Let s = s(m) among them are negative and (m - s) positive, i.e., rewrite the equality (1) as follows:

$$\Lambda_n = (\vec{\beta}_m^{(s)}, \vec{r}(m)), \tag{2}$$

where $\vec{\beta}_{m}^{(s)} = (\beta_{i_{1}}^{-}, \dots, \beta_{i_{s}}^{-}, \beta_{i_{s+1}}^{+}, \dots, \beta_{i_{m}}^{+}), \vec{r}(m) = (r_{i_{1}}^{(n)}, \dots, r_{i_{m}}^{(n)}) \in \mathcal{Q}^{m}, 0 \leqslant s \leqslant m$ and $m = 1, 2, \dots, \mathcal{M}$.

Observe, that $\vec{\beta}_m^{(s)} \in \beta^m$, not all the coordinates of the vector $\vec{\beta}_m^{(s)}$ are different. Let the set W_1 contains the numbers of form (1), where m = 1, i.e.,

$$W_1 = \{ \beta_i r_i : \beta_i \in \beta, r_i \in \mathcal{Q}, i = 1, 2, \dots \}.$$

The set W_2 has a form:

$$W_2 = \left\{ \beta_i r_i + \beta_k r_k \colon (\beta_i, \beta_k) \in \beta^2, \ \beta_i \neq \beta_k; \ i, k = 1, 2, \dots; \right.$$
$$(r_i, r_k) \in \mathcal{Q}^2; \ r_i \neq 0, \ r_k \neq 0; \ i, k = 1, 2, \dots \right\}.$$

Further, W_3 has a form:

$$W_3 = \left\{ \beta_{i_1} r_{i_1} + \beta_{i_2} r_{i_2} + \beta_{i_3} r_{i_3} \colon (\beta_{i_1}, \beta_{i_2}, \beta_{i_3}) \in \beta^3, \ \beta_{i_1} \neq \beta_{i_2} \neq \beta_{i_3}; \right.$$
$$(r_{i_1}, r_{i_2}, r_{i_3}) \in \mathcal{Q}^3; \ r_{i_1} \neq 0, \ r_{i_2} \neq 0; \ r_{i_3} \neq 0 \right\}.$$

Construct the sequence of the sets W_1, W_2, \ldots such that

$$\Lambda = \sum_{m=1}^{\mathcal{M}} W_m$$

and $W_i \cap W_j = \emptyset$ for $i \neq j$. Here $\mathcal{M} \leqslant \infty$.

It follows from the construction that

$$W_m = \sum_{\substack{\vec{r}(m) \in Q^m \\ \vec{\beta}_m^{(s)} \in \beta^m}} \left\{ \left(\vec{\beta}_m^{(s)}, \vec{r}(m) \right) \right\}.$$

Here for m = 2, 3, ... the symbol \sum^* denotes a sum over to $\vec{r}(m)$ with non-zero coordinates, and over $\vec{\beta}_m^{(s)}$ with different coordinates. The set

$$\left\{ \left(\vec{\beta}_{m}^{(s)}, \vec{r}(m) \right) \right\}$$

consists of the only element, i.e., the scalar product of the vectors $\vec{\beta}_m^{(s)}$ and $\vec{r}(m)$:

$$\left(\vec{\beta}_{m}^{(s)}, \vec{r}(m)\right) = \beta_{i_{1}}^{-} r_{i_{1}} + \dots + \beta_{i_{s}}^{-} r_{i_{s}} + \beta_{i_{s+1}}^{+} r_{i_{s+1}} + \dots + \beta_{i_{m}}^{+} r_{i_{m}}.$$

Moreover, if $\vec{r}(m_1) \neq \vec{r}(m_2)$, then $(\vec{\beta}_{m_1}^{(s)}, \vec{r}(m_1)) \neq (\vec{\beta}_{m_2}^{(s)}, \vec{r}(m_2))$ We summarize the facts above in the following theorem.

THEOREM 2. The support Λ of the generalized finite discrete measure μ_d contains the basis β such that

$$\Lambda \subseteq \sum_{m=1}^{\mathcal{M}} \sum_{\substack{\vec{r}(m) \in Q^m \\ \vec{\beta}_m^{(s)} \in \beta^m}} \left\{ \left(\vec{\beta}_m^{(s)}, \vec{r}(m) \right) \right\} = W(\beta). \tag{3}$$

Here $M \leq \infty$.

Further, β will be called basis of the measure μ_d . Assume,

$$\mathbf{E}(x) = \begin{cases} 0, & \text{if } x < 0; \\ 1, & \text{otherwise } x \geqslant 0. \end{cases}$$

COROLLARY 1. Let the generalized finite discrete measure μ_d has the basis β , then

$$\mu_d \big((-\infty, x] \big) = \sum_{(\vec{\beta}_m^{(s)}, \vec{r}(m)) \in W(\beta)} \mu_d \Big(\big\{ \big(\vec{\beta}_m^{(s)}, \vec{r}(m) \big) \big\} \Big) E \Big(x - \big(\vec{\beta}_m^{(s)}, \vec{r}(m) \big) \Big).$$

Frequently in our investigations the elements from subclasses of finite generalized measures \mathcal{M} will be considered. Some of them we will define now.

DEFINITION 4. A discrete finite generalized measure μ_d is called \mathcal{M} -quasi-lattice if it has the integer finite basis β consisting of M elements.

Let the basis β is finite, i.e., $\beta = (\beta_1, \beta_2, \dots, \beta_M)$. In the scalar product

$$(\vec{\beta}, \vec{r}) = \beta_1 r_1 + \cdots + \beta_M r_M$$

in the representation (3) the coefficients r_1, r_2, \ldots, r_M are, generally speaking, the rational numbers. If the basis $\beta_1, \beta_2, \ldots, \beta_M$ is integer, then $r_1, r_2, \ldots, r_M = 0, \pm 1, \pm 2, \ldots$

In more general case, the scalar products in the representation (3) have a form

$$(\vec{\beta}, \vec{r}) = \beta_1 \nu_1 + \dots + \beta_m \nu_m + \beta_{m+1} r_{m+1} + \dots + \beta_M r_M,$$

where $\nu_1, \ldots, \nu_m = 0, \pm 1, \pm 2, \ldots$ I.e., the basis $\beta = (\beta_1, \beta_2, \ldots, \beta_{\mathcal{M}})$ consists of two sub-basises – integer basis $\beta_1, \beta_2, \ldots, \beta_m$ and non-integer $\beta_{m+1}, \ldots, \beta_{\mathcal{M}}$.

380 A. Bikelis

DEFINITION 5. Discrete finite generalized measure μ_d is called M-discrete m-quasi-lattice if its basis $\beta = (\beta_1, \dots, \beta_m, \beta_{m+1}, \dots, \beta_M)$ contains integer subbasis $\beta_1, \beta_2, \dots, \beta_m$, where m maximal number satisfying this property. Remind that $\mathcal{M} < \infty$.

Remark 5. \mathcal{M} -discrete \mathcal{M} -quasi-lattice measure μ_d has the support $W(\beta)$ of (3) form, where $\mathcal{M} < \infty$ and the coordinates of vector $\vec{r}(m)$ are integer numbers $0, \pm 1, \pm 2, \ldots$

Note, that there exist measures with the integer infinite basis, i.e., $M = \infty$.

References

- B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley Pub.Comp. (1954).
- 2. B.M. Levitan, Almost Periodic Functions, Moscow (1953) (in Russian).
- 3. H. Cramer, Random Variables and Probability Distributions, Cambridge Univ. Press, Cambridge (1937).
- 4. C.G. Esseen, Fourier analysis of distribution functions. A mathematical study of Laplace-Gaussian law, *Acta Math.*, 77, 1–125.
- 5. A.N. Shiryaev, Probability, 2nd edition, Springer (1996).

REZIUMĖ

A. Bikelis. Kvazigardelinių skirstinių analizė

Darbe yra nagrinėjami tikimybiniai skirstiniai, kurių charakteringosios funkcijos yra beveik periodinės funkcijos.

Raktiniai žodžiai: beveik periodinės funkcijos, racionalioji bazė.