A two-dimensional limit discrete theorem for Mellin transforms of the Riemann zeta-function

Violeta BALINSKAITĖ (VU)
e-mail: violeta.balinskaite@mif.vu.lt
Abstract. In the paper two-dimensional limit theorem for the modified Mellin transform of the Riemann zeta-function is obtained.

Keywords: limit theorem, Mellin transform, probability measure, Riemann zeta-function, weak convergence.

Let $\zeta(s), s=\sigma+i t$, as usual, denote the Riemann zeta-function. The modified Mellin transforms $\mathcal{Z}_{k}(s)$ of powers $\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k}, k \geqslant 0$, are defined, for $\sigma \geqslant \sigma_{0}(k)>1$, by

$$
\mathcal{Z}_{k}(s)=\int_{1}^{\infty}\left|\zeta\left(\frac{1}{2}+i x\right)\right|^{2 k} x^{-s} \mathrm{~d} x
$$

In [2] and [3], discrete limit theorems on the complex plane for $\mathcal{Z}_{1}(s)$ and $\mathcal{Z}_{2}(s)$, respectively, were proved. Denote by $\mathcal{B}(S)$ the class of Borel sets of the space S, and, for $N \in \mathbb{N} \cup\{0\}$, put

$$
\mu_{N}(\ldots)=\frac{1}{N+1} \sum_{0 \leqslant m \leqslant N} 1,
$$

where in place of dots a condition satisfied by m is to be written. Let $h>0$ be a fixed number.

THEOREM 1 [2]. Let $\sigma>\frac{1}{2}$. Then on $(\mathbb{C}, \mathcal{B}(\mathbb{C})$) there exists a probability measure P_{σ} such that the probability measure

$$
\mu_{N}\left(\mathcal{Z}_{1}(\sigma+i m h) \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

converges weakly to P_{σ} as $N \rightarrow \infty$.
THEOREM 2 [3]. Let $\frac{7}{8}<\sigma<1$. Then on $(\mathbb{C}, \mathcal{B}(\mathbb{C})$) there exists a probability measure P_{σ} such that the probability measure

$$
\mu_{N}\left(\mathcal{Z}_{2}(\sigma+i m h) \in A\right), \quad A \in \mathcal{B}(\mathbb{C})
$$

converges weakly to P_{σ} as $N \rightarrow \infty$.

The aim of this note is a two-dimensional limit discrete theorem for the functions $\mathcal{Z}_{1}(s)$ and $\mathcal{Z}_{2}(s)$. Define

$$
P_{N, \sigma_{1}, \sigma_{2}}=\mu_{N}\left(\left(\mathcal{Z}_{1}\left(\sigma_{1}+i m h\right), \mathcal{Z}_{2}\left(\sigma_{2}+i m h\right)\right) \in A\right), A \in \mathcal{B}\left(\mathbb{C}^{2}\right)
$$

THEOREM 3. Suppose that $\sigma_{1}>\frac{1}{2}$ and $\frac{7}{8}<\sigma_{2}<1$. Then on $\left(\mathbb{C}^{2}, \mathcal{B}(\mathbb{C})^{2}\right)$ there exists a probability measure $P_{\sigma_{1}, \sigma_{2}}$ such that the measure $P_{N, \sigma_{1}, \sigma_{2}}$ converges weakly to $P_{\sigma_{1}, \sigma_{2}}$ as $N \rightarrow \infty$.

Let $a>1$ be a fixed number, for $y \geqslant 1, \sigma_{0}>\frac{1}{2}, v(x, y)=\exp \left\{-\left(\frac{x}{y}\right)^{\sigma_{0}}\right\}$, and

$$
\mathcal{Z}_{k, a, y}(s)=\int_{1}^{a}\left|\zeta\left(\frac{1}{2}+i x\right)\right|^{2 k} x^{-s} v(x, y) \mathrm{d} x, \quad k=1,2
$$

We begin the proof of Theorem 3 with a limit theorem for the vector

$$
\underline{\mathcal{Z}}_{a, y}\left(\sigma_{1}, \sigma_{2}, t\right)=\left(\mathcal{Z}_{1, a, y}\left(\sigma_{1}+i t\right), \mathcal{Z}_{2, a, y}\left(\sigma_{2}+i t\right)\right)
$$

For this aim, we apply a limit theorem on the torus

$$
\Omega_{a}=\prod_{u \in[1, a]} \gamma_{u},
$$

where $\gamma_{u}=\{s \in \mathbb{C}:|s|=1\} \stackrel{\text { def }}{=} \gamma$ for all $u \in[1, a]$. By the Tikhonov theorem, with the product topology and pointwise multiplication, the torus Ω_{a} is a compact topological Abelian group. On $\left(\Omega_{a}, \mathcal{B}\left(\Omega_{a}\right)\right)$, define the probability measure

$$
Q_{N, a}(A)=\mu_{N}\left(\left(u^{i m h}: u \in[1, a]\right) \in A\right)
$$

Lemma 4. On $\left(\Omega_{a}, \mathcal{B}\left(\Omega_{a}\right)\right)$, there exists a probability measure Q_{a} such that the probability measure $Q_{N, a}$ converges weakly to Q_{a} as $N \rightarrow \infty$.

Proof of the lemma is given in [3], Theorem 5.
Now let

$$
P_{N, a, y, \sigma_{1}, \sigma_{2}}(A)=\mu_{N}\left(\underline{\mathcal{Z}}_{a, y}\left(\sigma_{1}, \sigma_{2}, m h\right) \in A\right), \quad A \in \mathcal{B}\left(\mathbb{C}^{2}\right)
$$

THEOREM 5. On $\left(\mathbb{C}^{2}, \mathcal{B}\left(\mathbb{C}^{2}\right)\right)$, there exists a probability measure $P_{a, y, \sigma_{1}, \sigma_{2}}$ such that the probability measure $P_{N, a, y, \sigma_{1}, \sigma_{2}}$ converges weakly to $P_{a, y, \sigma_{1}, \sigma_{2}}$ as $N \rightarrow \infty$.

Proof. Define a function $h_{a, y}: \Omega_{a} \rightarrow \mathbb{C}^{2}$ by the formula

$$
\begin{aligned}
h_{a, y}\left(\left\{y_{x}: x \in[1, a]\right\}\right)= & \left(\int_{1}^{a}\left|\zeta\left(\frac{1}{2}+i x\right)\right|^{2} x^{-\sigma_{1}} v(x, y) \hat{y}_{x}^{-1} \mathrm{~d} x,\right. \\
& \left.\int_{1}^{a}\left|\zeta\left(\frac{1}{2}+i x\right)\right|^{4} x^{-\sigma_{2}} v(x, y) \hat{y}_{x}^{-1} \mathrm{~d} x\right),
\end{aligned}
$$

where

$$
\widehat{y}_{x}=\left\{\begin{array}{l}
y_{x} \text { if } y_{x} \text { is integrable over }[1, a] \\
\text { an arbitrary integrable over }[1, a] \text { circle function otherwise. }
\end{array}\right.
$$

Then the function $h_{a, y}$ is continuous, and

$$
\begin{aligned}
& h_{a, y}\left(\left\{x^{i m h}: x \in[1, a]\right\}\right) \\
& \quad=\left(\int_{1}^{a}\left|\zeta\left(\frac{1}{2}+i x\right)\right|^{2} x^{-\left(\sigma_{1}+i m h\right)} v(x, y) \mathrm{d} x, \int_{1}^{a}\left|\zeta\left(\frac{1}{2}+i x\right)\right|^{4} x^{-\left(\sigma_{2}+i m h\right)} v(x, y) \mathrm{d} x\right) \\
& \quad=\underline{\mathcal{Z}}_{a, y}\left(\sigma_{1}, \sigma_{2}, m h\right) .
\end{aligned}
$$

Therefore, the theorem is a consequence of Lemma 4 and Theorem 5.1 of [1].
By [2], [3], the integrals

$$
\mathcal{Z}_{k, y}(s)=\int_{1}^{\infty}\left|\zeta\left(\frac{1}{2}+i x\right)\right|^{2 k} x^{-s} v(x, y) \mathrm{d} x, \quad k=1,2
$$

converges absolutely for $\sigma>\frac{1}{2}$ and $\sigma>\frac{7}{8}$, respectively.
Let

$$
\underline{\mathcal{Z}}_{y}\left(\sigma_{1}, \sigma_{2}, t\right)=\left(\mathcal{Z}_{1, y}\left(\sigma_{1}+i t\right), \mathcal{Z}_{2, y}\left(\sigma_{2}+i t\right)\right)
$$

and

$$
P_{N, y, \sigma_{1}, \sigma_{2}}(A)=\mu_{N}\left(\underline{\mathcal{Z}}_{y}\left(\sigma_{1}, \sigma_{2}, m h\right) \in A\right), A \in \mathcal{B}\left(\mathbb{C}^{2}\right)
$$

THEOREM 6. Let $\sigma_{1}>\frac{1}{2}$ and $\frac{7}{8}<\sigma_{2}<1$. Then on $\left(\mathbb{C}^{2}, \mathcal{B}\left(\mathbb{C}^{2}\right)\right)$ there exists a probability measure $P_{y, \sigma_{1}, \sigma_{2}}$ such that the probability measure $P_{N, y, \sigma_{1}, \sigma_{2}}$ converges weakly to $P_{y, \sigma_{1}, \sigma_{2}}$ as $N \rightarrow \infty$.

Proof. Let $M>0$ be arbitrary number. Then we have that

$$
\begin{aligned}
& \limsup _{N \rightarrow \infty} P_{N, a, y, \sigma_{1}, \sigma_{2}}\left(\left\{|\underline{z}| \in \mathbb{C}^{2}:|\underline{z}|>M\right\}\right) \\
& \quad=\limsup _{N \rightarrow \infty} \mu_{N}\left(\left|\underline{\mathcal{Z}}_{a, y}\left(\sigma_{1}, \sigma_{2}, m h\right)\right|>M\right) \\
& \quad \leqslant \limsup _{N \rightarrow \infty} \frac{1}{M(N+1)} \sum_{m=0}^{N}\left|\underline{\mathcal{Z}}_{a, y}\left(\sigma_{1}, \sigma_{2}, m h\right)\right| \\
& \quad \leqslant \frac{1}{M} \sup _{a \geqslant 1} \limsup _{N \rightarrow \infty} \frac{1}{N+1} \sum_{m=0}^{N}\left(\sum_{k=1}^{2}\left|\mathcal{Z}_{k, a, y}\left(\sigma_{k}+i m h\right)\right|^{2}\right)^{\frac{1}{2}} \\
& \quad \leqslant \frac{1}{M} \sup _{a \geqslant 1} \limsup _{N \rightarrow \infty} \frac{1}{N+1}\left(\sum_{m=0}^{N} \sum_{k=1}^{2}\left|\mathcal{Z}_{k, a, y}\left(\sigma_{k}+i m h\right)\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\leqslant \frac{1}{M} \sum_{k=1}^{2}\left|\mathcal{Z}_{k, y}\left(\sigma_{k}\right)\right|^{2} \leqslant \frac{R}{M}
$$

Hence, taking $M=R \varepsilon^{-1}$, we find that

$$
\limsup _{N \rightarrow \infty} P_{N, a, y, \sigma_{1}, \sigma_{2}}\left(\left\{\underline{z} \in \mathbb{C}^{2}:|\underline{z}|>M\right) \leqslant \varepsilon\right.
$$

Therefore, we obtain that the family of probability measures $\left\{P_{a, y, \sigma_{1}, \sigma_{2}}: a \geqslant 1\right\}$ is tight, and relatively compact. Thus, there exists a subsequence $\left\{P_{a_{1}, y, \sigma_{1}, \sigma_{2}}\right\} \subset$ $\left\{P_{a, y, \sigma_{1}, \sigma_{2}}\right\}$ such that $P_{a_{1}, y, \sigma_{1}, \sigma_{2}}$ converges weakly to some measure $P_{y, \sigma_{1}, \sigma_{2}}$ as $a_{1} \rightarrow$ ∞.

On a certain probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$, define a random variable θ_{N} by

$$
\mathbb{P}\left(\theta_{N}=h m\right)=\frac{1}{N+1}, \quad m=0,1, \ldots, N
$$

and put

$$
\underline{X}_{N, a, y}\left(\sigma_{1}, \sigma_{2}\right)=\underline{\mathcal{Z}}_{a, y}\left(\sigma_{1}, \sigma_{2}, \theta_{N}\right)
$$

Then by Theorem 5,

$$
\begin{equation*}
\underline{X}_{N, a, y}\left(\sigma_{1}, \sigma_{2}\right) \underset{N \rightarrow \infty}{\mathcal{D}} \underline{X}_{a, y}\left(\sigma_{1}, \sigma_{2}\right), \tag{1}
\end{equation*}
$$

where $\underline{X}_{a, y}\left(\sigma_{1}, \sigma_{2}\right)$ is a \mathbb{C}^{2}-valued random element with the distribution $P_{a, y, \sigma_{1}, \sigma_{2}}$. Moreover, from above we have that

$$
\begin{equation*}
\underline{X}_{a_{1}, y}\left(\sigma_{1}, \sigma_{2}\right) \underset{a_{1} \rightarrow \infty}{\mathcal{D}} P_{y, \sigma_{1}, \sigma_{2}} . \tag{2}
\end{equation*}
$$

Denoting by ρ the metric on \mathbb{C}^{2}, we obtain that

$$
\begin{align*}
& \lim _{a \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{N+1} \sum_{m=0}^{N} \rho\left(\mathcal{Z}_{a, y}\left(\sigma_{1}, \sigma_{2}, m h\right), \mathcal{Z}_{y}\left(\sigma_{1}, \sigma_{2}, m h\right)\right) \\
& \left.\left.\quad \leqslant \lim _{a \rightarrow \infty} \limsup _{N \rightarrow \infty} \sum_{k=1}^{2} \frac{1}{N+1} \sum_{m=0}^{N} \right\rvert\, \mathcal{Z}_{k, a, y}\left(\sigma_{k}+i m h\right)-\mathcal{Z}_{k, y}\left(\sigma_{k}+\text { imh }\right) \right\rvert\,=0 \tag{3}
\end{align*}
$$

Now let $\underline{X}_{N, y}\left(\sigma_{1}, \sigma_{2}\right)=\underline{\mathcal{Z}}_{y}\left(\sigma_{1}, \sigma_{2}, \theta_{N}\right)$. Then, in view of (3), for every $\varepsilon>0$,

$$
\begin{aligned}
& \lim _{a \rightarrow \infty} \limsup _{N \rightarrow \infty} \mathbb{P}\left(\rho\left(\underline{X}_{N, a, y}\left(\sigma_{1}, \sigma_{2}\right), \underline{X}_{N, y}\left(\sigma_{1}, \sigma_{2}\right)\right) \geqslant \varepsilon\right) \\
& \quad=\lim _{a \rightarrow \infty} \limsup _{N \rightarrow \infty} \mu_{N}\left(\rho\left(\underline{\mathcal{Z}}_{a, y}\left(\sigma_{1}, \sigma_{2}, m h\right), \underline{\mathcal{Z}}_{y}\left(\sigma_{1}, \sigma_{2}, m h\right)\right) \geqslant \varepsilon\right)=0
\end{aligned}
$$

This, (1), (2) and Theorem 4.2 of [1] prove the theorem.

Proof of Theorem 3. In view of Theorem 6, in remains to pass from the vector $\underline{\mathcal{Z}}_{y}\left(\sigma_{1}, \sigma_{2}, m h\right)$ to

$$
\underline{\mathcal{Z}}\left(\sigma_{1}, \sigma_{2}, m h\right)=\left(\mathcal{Z}_{1}\left(\sigma_{1}+i m h\right), \mathcal{Z}_{2}\left(\sigma_{2}+i m h\right)\right)
$$

In [2] it was proved that, for $\sigma>\frac{1}{2}$,

$$
\lim _{y \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{N+1} \sum_{m=0}^{N}\left|\mathcal{Z}_{1}(\sigma+i m h)-\mathcal{Z}_{1, y}(\sigma+i m h)\right|=0
$$

and in [3] it was obtained that, for $\sigma>\frac{7}{8}$,

$$
\lim _{y \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{N+1} \sum_{m=0}^{N}\left|\mathcal{Z}_{2}(\sigma+i m h)-\mathcal{Z}_{2, y}(\sigma+i m h)\right|=0
$$

Hence, it follows that

$$
\lim _{y \rightarrow \infty} \limsup _{N \rightarrow \infty} \frac{1}{N+1} \sum_{m=0}^{N} \rho\left(\underline{\mathcal{Z}}\left(\sigma_{1}, \sigma_{2}, m h\right), \underline{\mathcal{Z}}_{y}\left(\sigma_{1}, \sigma_{2}, m h\right)\right)=0
$$

Therefore, putting

$$
\underline{X}_{N}\left(\sigma_{1}, \sigma_{2}\right)=\underline{\mathcal{Z}}\left(\sigma_{1}, \sigma_{2}, \theta_{N}\right),
$$

we derive that, for every $\varepsilon>0$,

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \limsup _{N \rightarrow \infty} \mathbb{P}\left(\rho\left(\underline{X}_{N, y}\left(\sigma_{1}, \sigma_{2}\right), \underline{X}_{N}\left(\sigma_{1}, \sigma_{2}\right)\right) \geqslant \varepsilon\right)=0 . \tag{4}
\end{equation*}
$$

By Theorem 6, we have that

$$
\begin{equation*}
\underline{X}_{N, y}\left(\sigma_{1}, \sigma_{2}\right) \underset{N \rightarrow \infty}{\mathcal{D}} \underline{X}_{y}\left(\sigma_{1}, \sigma_{2}\right), \tag{5}
\end{equation*}
$$

where $\underline{X}_{y}\left(\sigma_{1}, \sigma_{2}\right)$ is a \mathbb{C}^{2}-valued random element with the distribution $P_{y, \sigma_{1}, \sigma_{2}}$. Similarly, as in the proof of Theorem 6, we find that the family of probability measures $\left\{P_{y, \sigma_{1}, \sigma_{2}}: y \geqslant 1\right\}$ is tight. Hence, it is relatively compact. Therefore, there exists a subsequence $\left\{P_{y_{1}, \sigma_{1}, \sigma_{2}}\right\} \subset\left\{P_{y, \sigma_{1}, \sigma_{2}}\right\}$ such that $P_{y_{1}, \sigma_{1}, \sigma_{2}}$ converges weakly to some probability measure $P_{\sigma_{1}, \sigma_{2}}$ as $y_{1} \rightarrow \infty$. Hence

$$
\underline{X}_{y_{1}}\left(\sigma_{1}, \sigma_{2}\right) \xrightarrow[y_{1} \rightarrow \infty]{\mathcal{D}} P_{\sigma_{1}, \sigma_{2}} .
$$

This, (4), (5) and Theorem 4.2 of [1] again show that

$$
\underline{X}_{N}\left(\sigma_{1}, \sigma_{2}\right) \xrightarrow[N \rightarrow \infty]{\mathcal{D}} P_{\sigma_{1}, \sigma_{2}}
$$

and the theorem is proved.

References

1. P.Billingsley, Convergence of Probability Measures, John Willy and Sons, New York (1968).
2. V. Balinskaitè, A. Laurinčikas, On value distribution of the Mellin transform of the Riemann zetafunction (submited).
3. V. Balinskaité, A. Laurinčikas, Discrete limit theorems for the Mellin transform of the Riemann zetafunction (submited).

REZIUMĖ

V. Balinskaitè. Dvimatè diskreti ribinė teorema Rymano dzeta funkcijos Melino transformacijoms

Irodyta dvimatė diskreti ribinė teorema Rymano dzeta funkcijos antrojo ir ketvirtojo laipsnio Melino transformacijoms.

