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A two-dimensional limit discrete theorem for Mellin
transforms of the Riemann zeta-function
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Abstract. In the paper two-dimensional limit theorem for the modified Mellin transform of the Riemann
zeta-function is obtained.
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Let ζ(s), s = σ + it , as usual, denote the Riemann zeta-function. The modified
Mellin transformsZk(s) of powers|ζ(1

2 +it)|2k , k � 0, are defined, forσ � σ0(k) > 1,
by

Zk(s) =
∫ ∞

1

∣∣∣ζ(1

2
+ ix

)∣∣∣2k
x−s dx.

In [2] and [3], discrete limit theorems on the complex plane forZ1(s) andZ2(s),
respectively, were proved. Denote byB(S) the class of Borel sets of the spaceS, and,
for N ∈ N ∪ {0}, put

µN(...) = 1
N + 1

∑
0�m�N

...

1,

where in place of dots a condition satisfied bym is to be written. Leth > 0 be a fixed
number.

THEOREM 1 [2]. Let σ > 1
2 . Then on (C,B(C)) there exists a probability measure

Pσ such that the probability measure

µN(Z1(σ + imh) ∈ A), A ∈ B(C),

converges weakly to Pσ as N → ∞.

THEOREM 2 [3]. Let 7
8 < σ < 1. Then on (C,B(C)) there exists a probability mea-

sure Pσ such that the probability measure

µN(Z2(σ + imh) ∈ A), A ∈ B(C),

converges weakly to Pσ as N → ∞.
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The aim of this note is a two-dimensional limit discrete theorem for the functions
Z1(s) andZ2(s). Define

PN,σ1,σ2 = µN((Z1(σ1 + imh),Z2(σ2 + imh)) ∈ A),A ∈ B(C2).

THEOREM 3. Suppose that σ1 > 1
2 and 7

8 < σ2 < 1. Then on (C2,B(C)2) there
exists a probability measure Pσ1,σ2 such that the measure PN,σ1,σ2 converges weakly
to Pσ1,σ2 as N → ∞.

Let a > 1 be a fixed number, fory � 1, σ0 > 1
2, v(x,y) = exp{−(x

y
)σ0}, and

Zk,a,y(s) =
∫ a

1

∣∣∣ζ(1
2

+ ix
)∣∣∣2k

x−sv(x,y)dx, k = 1,2.

We begin the proof of Theorem 3 with a limit theorem for the vector

Za,y(σ1,σ2, t) = (Z1,a,y(σ1 + it),Z2,a,y(σ2 + it)).

For this aim, we apply a limit theorem on the torus

�a =
∏

u∈[1,a]
γu,

whereγu = {s ∈ C: |s| = 1} def= γ for all u ∈ [1, a]. By the Tikhonov theorem, with the
product topology and pointwisemultiplication, the torus�a is a compact topological
Abelian group. On(�a,B(�a)), define the probability measure

QN,a(A) = µN((uimh: u ∈ [1, a]) ∈ A).

LEMMA 4. On (�a,B(�a)), there exists a probability measure Qa such that the
probability measure QN,a converges weakly to Qa as N → ∞.

Proof of the lemma is given in [3], Theorem 5.
Now let

PN,a,y,σ1,σ2(A) = µN(Za,y(σ1,σ2,mh) ∈ A), A ∈B(C2).

THEOREM 5. On (C2,B(C2)), there exists a probability measure Pa,y,σ1,σ2 such
that the probability measure PN,a,y,σ1,σ2 converges weakly to Pa,y,σ1,σ2 as N → ∞.

Proof. Define a functionha,y : �a → C
2 by the formula

ha,y({yx : x ∈ [1, a]}) =
(∫ a

1

∣∣∣ζ(1
2

+ ix
)∣∣∣2x−σ1v(x,y)ŷ−1

x dx,

∫ a

1

∣∣∣ζ(1
2

+ ix
)∣∣∣4x−σ2v(x,y)ŷ−1

x dx

)
,
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where

ŷx =
{

yx if yx is integrable over [1,a],
an arbitrary integrable over[1, a]circle functionotherwise.

Then the functionha,y is continuous, and

ha,y({ximh: x ∈ [1, a]})

=
(∫ a

1

∣∣∣ζ(1

2
+ix

)∣∣∣2x−(σ1+imh)v(x,y)dx,

∫ a

1

∣∣∣ζ(1

2
+ix

)∣∣∣4x−(σ2+imh)v(x,y)dx

)
=Za,y(σ1,σ2,mh).

Therefore, the theorem is a consequence of Lemma 4 and Theorem 5.1 of [1].
By [2], [3], the integrals

Zk,y (s) =
∫ ∞

1

∣∣∣ζ(1
2

+ ix
)∣∣∣2k

x−sv(x,y)dx, k = 1,2,

converges absolutely forσ > 1
2 andσ > 7

8, respectively.
Let

Zy(σ1,σ2, t) = (Z1,y(σ1 + it),Z2,y(σ2 + it)),

and

PN,y,σ1,σ2(A) = µN(Zy(σ1,σ2,mh) ∈ A), A ∈B(C2).

THEOREM 6. Let σ1 > 1
2 and 7

8 < σ2 < 1. Then on (C2,B(C2)) there exists a
probability measure Py,σ1,σ2 such that the probability measure PN,y,σ1,σ2 converges
weakly to Py,σ1,σ2 as N → ∞.

Proof. Let M > 0 be arbitrary number. Then we have that

limsup
N→∞

PN,a,y,σ1,σ2({|z| ∈ C
2: |z| > M})

= limsup
N→∞

µN(|Za,y(σ1,σ2,mh)| > M)

� limsup
N→∞

1
M(N + 1)

N∑
m=0

|Za,y(σ1,σ2,mh)|

� 1
M

sup
a�1

limsup
N→∞

1
N + 1

N∑
m=0

( 2∑
k=1

|Zk,a,y(σk + imh)|2
) 1

2

� 1

M
sup
a�1

limsup
N→∞

1

N + 1

( N∑
m=0

2∑
k=1

|Zk,a,y(σk + imh)|2
) 1

2
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� 1

M

2∑
k=1

|Zk,y(σk)|2 � R

M
.

Hence, takingM = Rε−1, we find that

limsup
N→∞

PN,a,y,σ1,σ2({z ∈ C
2: |z| > M) � ε.

Therefore, we obtain that the family of probability measures{Pa,y,σ1,σ2: a � 1}
is tight, and relatively compact. Thus, there exists a subsequence{Pa1,y,σ1,σ2} ⊂
{Pa,y,σ1,σ2} such thatPa1,y,σ1,σ2 converges weakly to some measurePy,σ1,σ2 asa1 →
∞.

On a certain probability space(�,B(�),P), define a random variableθN by

P(θN = hm) = 1

N + 1
, m = 0,1, ...,N,

and put

XN,a,y(σ1,σ2) =Za,y(σ1,σ2, θN ).

Then by Theorem 5,

XN,a,y(σ1,σ2)
D−→

N→∞ Xa,y(σ1,σ2), (1)

whereXa,y(σ1,σ2) is a C
2-valued random element with the distributionPa,y,σ1,σ2.

Moreover, from above we have that

Xa1,y
(σ1,σ2)

D−→
a1→∞Py,σ1,σ2 . (2)

Denoting byρ the metric onC2, we obtain that

lim
a→∞ limsup

N→∞
1

N + 1

N∑
m=0

ρ(Za,y(σ1,σ2,mh),Zy (σ1,σ2,mh))

� lim
a→∞ limsup

N→∞

2∑
k=1

1
N + 1

N∑
m=0

|Zk,a,y (σk + imh) −Zk,y(σk + imh)| = 0. (3)

Now let XN,y(σ1,σ2) =Zy(σ1,σ2, θN ). Then, in view of (3), for everyε > 0,

lim
a→∞ limsup

N→∞
P(ρ(XN,a,y(σ1,σ2),XN,y(σ1,σ2)) � ε)

= lim
a→∞ limsup

N→∞
µN(ρ(Za,y(σ1,σ2,mh),Zy(σ1,σ2,mh)) � ε) = 0.

This, (1), (2) and Theorem 4.2 of [1] prove the theorem.
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Proof of Theorem 3. In view of Theorem 6, in remains to pass from the vector
Zy(σ1,σ2,mh) to

Z(σ1,σ2,mh) = (Z1(σ1 + imh),Z2(σ2 + imh)).

In [2] it was proved that, forσ > 1
2,

lim
y→∞ limsup

N→∞
1

N + 1

N∑
m=0

|Z1(σ + imh) −Z1,y(σ + imh)| = 0,

and in [3] it was obtained that, forσ > 7
8,

lim
y→∞ limsup

N→∞
1

N + 1

N∑
m=0

|Z2(σ + imh) −Z2,y(σ + imh)| = 0.

Hence, it follows that

lim
y→∞ limsup

N→∞
1

N + 1

N∑
m=0

ρ(Z(σ1,σ2,mh),Zy(σ1,σ2,mh)) = 0.

Therefore, putting

XN(σ1,σ2) =Z(σ1,σ2, θN),

we derive that, for everyε > 0,

lim
y→∞ limsup

N→∞
P(ρ(XN,y(σ1,σ2),XN(σ1,σ2)) � ε) = 0. (4)

By Theorem 6, we have that

XN,y(σ1,σ2)
D−→

N→∞ Xy(σ1,σ2), (5)

whereXy(σ1,σ2) is aC
2-valued random element with the distributionPy,σ1,σ2. Sim-

ilarly, as in the proof of Theorem 6, we find that the family of probability measures
{Py,σ1,σ2: y � 1} is tight. Hence, it is relatively compact. Therefore, there exists a sub-
sequence{Py1,σ1,σ2} ⊂ {Py,σ1,σ2} such thatPy1,σ1,σ2 converges weakly to some proba-
bility measurePσ1,σ2 asy1 → ∞. Hence

Xy1
(σ1,σ2)

D−→
y1→∞Pσ1,σ2.

This, (4), (5) and Theorem 4.2 of [1] again show that

XN(σ1,σ2)
D−→

N→∞Pσ1,σ2

and the theorem is proved.
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REZIUMĖ

V. Balinskaitė. Dvimatė diskreti ribinė teorema Rymano dzeta funkcijos Melino transformacijoms

↪Irodyta dvimatė diskreti ribinė teorema Rymano dzeta funkcijos antrojoir ketvirtojo laipsnio Melino trans-

formacijoms.


