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Abstract. This paper provides analysis on Dirichlet series with a, coefficients obtained from
MAIJ; (x1, ..., xp) function known in theoretical computer science.
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An ordinary fractal string L is a bounded open subset 2 of R. Such a set consists of
countably many open intervals, the lengths of which will be denoted by [y, I, I3, ...,
called the lengths of the string [4]. Let us define binary number by [n], = x1x3... X,
xje{0,1}, j=1,...,m.

Let
i — { 1, if Zl<i<mxi >m/2,
0, otherwise.
It is well known in the computer science the majority function MAJ,, (x1, ..., x;) =
a, [1].

Now we can define a zeta function

BM(s) =Y %
n=1

which is holomorphic for o > 1.
Let us define strings’ lengths of the zeta function by a, /n, n € N. As we see string
lengths can be divided into two types: with length 0 and other with lengths 1/n,n € N.
Let us divide a set N into subsets (intervals), where a,, = 0 and a,, = 1. Let’s number
these intervals. In the next step let’s number the elements from every interval. Then we

can denote by ¢y, k € N, I =1,..., m, the [-th element from the k-th interval with a
given value n. As an example, we can write the first eight elements: ¢j1 = 1, ¢j2 = 2,
ci13=3,c01=4,¢c31=5,¢c3p=6,c33 =7, c41 =8, .... So we have obtained two sets,

upper C* and lower C,, where zeta function’s strings’ lengths are equal to 1/ or zero,
C* ={cy: kisodd, ! € N},
« = {cu: kiseven,l € N}.

Dirac’s delta function is a linear functional from a space (commonly taken as a
Schwartz space S or the space of all smooth functions of compact support D) of test
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functions f
o¢]
é(x —a)=0, as x #a, and / fx)d(x —a)dx = f(a).
—00
The Heaviside step function is defined by

1, if x>0
H(x)—{o, if x <0,

The Dirac delta function can be viewed as the derivative of the Heaviside step func-
tion [3]
d
—H(x)=46x).
dx
Now we can construct the numbers

Nk =Ck1 — W,

where w is infinitesimal number, bigger than zero, but less than any positive real num-
ber [2].

THEOREM 1. Foro > 1and M ={r: n € ¢,,} we have

oo M 1 k,lH _
gBM(S):ZZ( ) (n le).

ns
n=1k=1

Proof. Let’s investigate two cases: n € C, and n € C*. Let n be fixed. In the first
case when n € C, we have H(n — n;) = 1 for n > n;, and the number of such terms
will be even. From this it follows

M

Y (=DTH@m —m) =0,

k=1

and we geta, =0if n € C,.

In the second case when n € C* we have H (n — n;) = 1 for n > 1y, and the number
of such terms will be odd. Because of the first term is positive, the last term of the
sequence (=D1H®n - nx) is positive. From this we have that

M
Y =D TH@ -y =1,
k=1
and we geta, =1 ifn e C*.
If we will sum more terms, than M, then we get n < g, H(n — ng) = 0 and these
terms will not contribute the sum. This completes the proof.



The Boolean zeta function 37
For our purposes will be useful the following statement.

LEMMA 1. Let

an =Kx + R(x),

n<x

where R(x) =0(x%) with 0 < o < 1. Then we have

b, Ks +/°° R(u)du
1

o0

ns  s—1
=1

= ustH1
foro > a.

Proof can be found in [5].
Let a,, satisfy the hypothesis of Lemma 1

Zan =Kx +0(x%),
n<x

with 0 < & < 1. For example, we can take ay»_1 = 1 for all n € N. Then the equality

> n<x @n = [logy (x + 1)] holds.
For such a,, we have the following statement.

THEOREM 2. The function {gm(s) is analytically continuable to the region o > «,
except, maybe, for a simple pole at s = 1 with residue K.

Proof. Summing by parts we find that

1—s X
an X s R(u)du S—
—:K( - ) / 0(x*).
pr = 1= +s T +0(x°7%)

Taking o > 1 and letting x to infinity, whence we obtain

Ks /’OO R(u)du
1+s _

tBm(s) = - e

n<x

The integral here converges uniformly in o > « + ¢ for each ¢ > 0. Therefore the last
equality gives the analytic continuation of the function {gy(s) to the half-plane o > «.
In this half-plane ¢gpm(s) is regular if K = 0. In case K # 0 the point s = 1 is its simple
pole with residue K.

Now we can evaluate the case given by the Lemma 1, and we have

{Bm(s) = Ks +O< il )

S
s—1 o0—0
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REZIUME

A. Javtokas. Dvejetainé dzeta funkcija

Straipsnyje apibréZiama dvejetainé dzeta funkcija. Suformuluojamos dvi teoremos, kuriose dvejetainé
dzeta funkcija iSreiSkiama Heavisaido funkcija ir pratgsiama i sriti 0 > o, kai 0 < o < 1.



