The law of iterated logarithm for combinatorial multisets

Jolita NORKŪNIENĖ (VU, VIKO)

e-mail: jolita.norkuniene@mif.vu.lt

1. Introduction and results

In this paper we investigate the strong convergence of random variables given on sequences of probability spaces. We analyze mappings defined on a class of combinatorial structures \mathcal{U} , in some papers [1], [2] called multisets. Let σ be a combinatorial structure of size *n*, consisting of components of sizes $(k_1, k_2, ..., k_n)$, $k_j = k_j(\sigma) \ge 0$, $1 \le j \le n$ satisfying the condition

$$L_n(k) := k_1 + 2k_2 + \dots + nk_n = n.$$
⁽¹⁾

The vector $\bar{k} = (k_1, k_2, ..., k_n)$ is called structure vector of σ . A component of size j may be taken with repetitions from some set having $1 \le \pi(j) < \infty$ elements. Then the number of σ with the structure vector \bar{k} is

$$N_n(\bar{k}) = \mathbf{1}(L_n(\bar{k}) = n) \prod_{j=1}^n \binom{\pi(j) + k_j - 1}{k_j}.$$

The number of structures of size *n* is $p(n) := \sum_{L_n(\bar{k})=n} N_n(\bar{k})$, where the summation is extended over vectors \bar{k} satisfying condition (1).

The fundamental examples of the class of multisets \mathcal{U} are integer partitions, polynomials over a finite field, additive arithmetical semigroups, forests of unlabeled trees, mapping patterns and others.

Let v_n be the uniform probability measure on the set $\mathcal{U}_n \subset \mathcal{U}$ of multisets of size n. It is known [1], that, as $n \to \infty$, the asymptotic distribution of $k_j(\cdot)$ under v_n for a fixed $j \ge 0$ is negative binomial with parameters $(\pi(j), q^{-j}), 0 \le j \le n$, where q > 1 is a parameter depending on \mathcal{U} . We recall that this distribution is given by

$$P(\gamma_j = k) = \binom{\pi(j) + k - 1}{k} (1 - q^{-j})^{\pi(j)} q^{-jk}, \quad k \ge 0.$$
⁽²⁾

Let $\gamma_1, \gamma_2, ..., \gamma_n$ be independent negative binomial random variables (r.vs) γ_j with the parameters $(\pi(j), q^{-j}), 1 \le j \le n$, and q > 1. The relation (1) makes $k_j(\cdot)$ dependent and satisfying the conditioning relation

$$\nu(k_1(\sigma) = k_1, ..., k_n(\sigma) = k_n) = P(\gamma_1 = k_1, ..., \gamma_n = k_n | \Theta_n = n)$$
(3)

for $\bar{k} = (k_1, ..., k_n) \in \mathbb{Z}^{+n}$. Here $\Theta_n = 1\gamma_1 + ... + n\gamma_n$. We assume that the class of multisets satisfies the following condition:

$$\pi(j) = \frac{\theta q^{j}}{j} \left(1 + \mathcal{O}(j^{-\beta}) \right) \tag{4}$$

for some $\beta > 0$. This implies the logarithmic condition (see [1]).

Using the method going back to probabilistic number theory and proposed by E. Manstavičius [2] and generating functions analysis (see [4], [6]), we investigate the strong convergence of random variables defined via $k_j(\sigma)$, $1 \le j < n$.

Let \mathbb{G} be an additive abelian group. A map $h: \mathcal{U}_n \to \mathbb{G}$ is called an additive function if it satisfies the relation

$$h(\sigma) = \sum_{j=1}^{n} h_j (k_j(\sigma))$$

for each $\sigma \in \mathcal{U}_n$, where $h_j(0) = 0$ and $h_j(k)$, $j \ge 1$, $k \ge 1$ is some double sequence in \mathbb{G} . Let $\mathbb{G} = \mathbb{R}$,

$$h(\sigma, m) := \sum_{j=1}^{m} h_j (k_j(\sigma)), \quad A(m) := \theta \sum_{j=1}^{m} \frac{a_j}{j}, \quad B(m) := \theta \sum_{j=1}^{m} \frac{a_j^2}{j}$$

Here $a_j := h_j(1)$. As above, let γ_j , $1 \le j \le n$ be independent negative binomial r.vs, $\Xi_n = h_1(\gamma_1) + ... + h_n(\gamma_n)$, and $S_n = a_1\gamma_1 + ... + a_n\gamma_n$. As in [2], we compare distributions of $h(\sigma, n)$ with distribution of Ξ_n or S_n .

THEOREM 1. Let $\alpha(m)$ and $\beta(m)$ be real sequences, $\beta(m) > 0, \beta(m) \uparrow \infty$, as $m \to \infty$. Then the following assertions are equivalent:

$$\lim_{r \to \infty} \overline{\lim_{n \to \infty}} \nu_n \left(\max_{r \leqslant m \leqslant n} \beta(m)^{-1} \left| h(\sigma, m) - \alpha(m) \right| \ge \varepsilon \right) = 0, \tag{5}$$

for each $\varepsilon > 0$ *and*

$$\beta(n)^{-1} (S_n - \alpha(n)) \to 0 \quad P - a.s.$$
(6)

COROLLARY 2. If $\beta(m) \to \infty$ and the series

$$\sum_{j=1}^{\infty} \frac{|a_j|^p}{j\beta(j)^p}$$

converges for some $1 \leq p \leq 2$, then relation (5) holds with $\alpha(m) = A(m)$.

Let $Z_n := (S_n - A(n))/\beta(n)$. We write $Z_n \Rightarrow [-1, 1]$ if the sequence Z_n is relatively compact and the set of limit points is the interval [-1,1] with probability one. Denote $\beta(n) = (2B(n)LLB(n))^{1/2}$, where $Lu := \log \max(u, e), u \in \mathbb{R}$, and $f(\sigma, m) = (h(\sigma, m) - A(m))/\beta(m)$. We now state the law of iterated logarithm.

THEOREM 3. Suppose $B(n) \to \infty$ and there exists a sequence $b = b(n) \to \infty$, b = o(n) such that $B(n) = o(\beta^2(b))$. Then the following assertions are equivalent:

$$Z_n \Rightarrow [-1, 1] \quad P-a.s.$$

and

$$\lim_{r \to \infty} \overline{\lim_{n \to \infty}} \nu_n \left(\max_{r \leqslant m \leqslant n} \left| f(\sigma, m) \right| \ge 1 + \delta \right) = 0.$$

but

$$\lim_{r \to \infty} \lim_{n \to \infty} \nu_n \left(\min_{r \leq m \leq n} \left| f(\sigma, m) - b \right| < \delta \right) = 1$$

for each $b \in [-1, 1]$ and $\delta > 0$.

THEOREM 4. Let $j(\sigma, 1) < \cdots < j(\sigma, s)$ be the sizes of components of σ and $s = s(\sigma)$. Then

$$\lim_{r \to \infty} \overline{\lim_{n \to \infty}} \nu_n \left(\max_{r \leqslant m \leqslant s} \frac{\left| \log j(\sigma, k) - k \right|}{(2kLLk)^{1/2}} \ge 1 + \delta \right) = 0,$$

and

$$\lim_{r \to \infty} \lim_{n \to \infty} \nu_n \left(\min_{r \leqslant m \leqslant s} \left| \frac{\log j(\sigma, k) - k}{(2kLLk)^{1/2}} - b \right| < \delta \right) = 1$$

for each $b \in [-1, 1]$ and $\delta > 0$.

2. Proofs

We will use the fundamental lemma and the tail probability estimates of conditional distributions.

LEMMA 5 ([1]). If condition (4) is satisfied, then, in the above notation,

$$\nu_n\Big((k_1(\sigma),\ldots,k_b(\sigma))\in A\Big)-P\big((\gamma_1,\ldots,\gamma_b)\in A\big)=O(n^{-1}b)$$

uniformly in $A \subset \mathbb{Z}^{+b}$.

LEMMA 6. Let (G, +) be an additive abelian group, $A \subset G$, and $h_j(k)$ be the *G*-valued double sequence defining the additive function $h: \mathcal{U}_n \to \mathbb{G}$. If condition (4) is satisfied, then

$$\nu_n (h(\sigma) \notin A + A - A) = P(\Xi_n \notin A + A - A | \Theta_n = n)$$

$$\leqslant C (P^{\theta \wedge 1}(\Xi_n \notin A) + n^{-\theta}).$$
(7)

J. Norkūnienė

Proof of Lemma 6. The equality in (7) follows from (3). To prove the estimate, we use Lemma A of the paper [3]. We need to show that the negative binomial r.vs satisfy its assumptions. In our case condition (i) is obvious: $P(\gamma_i = 0) = (1 - q^{-j})^{\pi(j)} \ge c > 0$.

Condition (ii) concerns the probabilities $P(\Omega_m) := P(\Theta_n = m)$ for $0 \le m \le n$. We have

$$P(\Omega_m) = \sum_{L_n(\bar{k})=m} \prod_{j=1}^n \binom{\pi(j) + k_j - 1}{k_j} (1 - q^{-j})^{\pi(j)} q^{-jk_j}$$
$$= \prod_{j \leq n} (1 - q^{-j})^{\pi(j)} q^{-m} p(m).$$

Since the generating function of multisets is

$$Z(x) = 1 + \sum_{k \ge 1} p(k) z^k = \prod_{j=1}^{\infty} (1 - x^j)^{-\pi(j)}, \quad |z| < q^{-1}.$$

using Proposition 3 from [4] we find the k-th Taylor coefficient of this generating function:

$$q^{-m}p(m) = K(\theta)n^{\theta-1} (1 + \mathcal{O}(n^{-\beta}\log n)),$$

here $K(\theta)$ is a constant depending on the class of multisets. Then $P(\Omega_n) \gg n^{-1}$ and

$$P(\Omega_m)/P(\Omega_n) \leq C(n/(m+1))^{1-\theta}, \quad 0 \leq m \leq n-1.$$

These are the required estimates in conditions (ii) and (iii) of Lemma A. We omit easy technical estimates in the proof of

$$\sum_{jk=n} \binom{\pi(j)+k-1}{k} q^{-jk} = O\left(\frac{1}{n}\right)$$

which is the remaining condition (iv) of this lemma. Lemma 5 is proved.

LEMMA 7. Let $b_n \rightarrow 0$, $1 \leq s \leq n$ and $\varepsilon > 0$. Then

$$\nu_n \left(\max_{s \leqslant m \leqslant n} b_m \Big| \sum_{j \leqslant m} a_j k_j(\sigma) - A(m) \Big| \ge \varepsilon \right)$$

$$\leqslant C_1(\varepsilon) \left(b_s^2 B(s) + \theta \sum_{s \leqslant j \leqslant n} \frac{b_j^2 a^2(j)}{j} \right)^{\theta \wedge 1} + C_2 n^{-\theta}.$$

Proof of Lemma 7. Use Lemma 6 and Theorem 3.3.15 of [5].

Proof of Theorem 1. As in [2], at first we notice, that it suffices to consider the linear function $\hat{h}(\sigma, m) := a_1k_1(\sigma) + \cdots + a_mk_m(\sigma)$. Following E. Manstavičius and

G.J. Babu (see the proof of Theorem 1 in [3]), we have

$$\nu_n \left(\max_{r \leqslant m \leqslant n} \beta(m)^{-1} | h(\sigma, m) - \hat{h}(\sigma, m) | \ge \varepsilon \right)$$
$$\leqslant \nu_n \left(\sum_{j \leqslant n} | h_j(k_j(\sigma)) - a_j k_j(\sigma) | \ge \varepsilon \beta(r) \right) = o(1).$$

From the Lemma 9.2.5 [5], one can see that relation (6) is equivalent to

$$P\left(\sup_{m \ge r} \beta(m)^{-1} | S(m) - \alpha(m) | \ge \varepsilon\right)$$

=
$$\lim_{n \to \infty} P\left(\sup_{r \le m \le n} \beta(m)^{-1} | S(m) - \alpha(m) \ge \varepsilon |\right) = o(1),$$

for each $\varepsilon > 0$ and $r \to \infty$. From the conditioning relation (3) and Lemma 6 we have

$$\nu_n \bigg(\max_{r \leqslant m \leqslant n} \beta(m)^{-1} \big| h(\sigma, m) - \alpha(m) \big| \ge \varepsilon \bigg)$$

 $\ll P^{1 \wedge \theta} \bigg(\sup_{r \leqslant m \leqslant n} \beta(m)^{-1} \big| S(m) - \alpha(m) \big| \ge \varepsilon/3 \bigg) + n^{-\theta}.$

Thus from (6) we obtain (5). Now using Lemma 5, we have

$$\nu_n \left(\max_{r \leqslant m \leqslant b} \beta(m)^{-1} | h(\sigma, m) - \alpha(m)) | \ge \varepsilon \right)$$
$$= P \left(\sup_{r \leqslant m \leqslant b} \beta(m)^{-1} | S_m - \alpha(m) | \ge \varepsilon \right) + o(1))$$

for each b = b(n), $b \to \infty$, b = o(n) and $r \le b$. Taking limits with respect to *n*, later with respect to *r*, from (5) we deduce (6). Theorem is proved.

Proof of Theorem 2. The desired assertion can be obtained using the arguments from the proof of Theorem 1, Lemma 5 and Lemma 6. See the proof of Theorem 2 in [2] for details.

Proof of Theorem 3. At the beginning, we apply Theorem 2 to the additive function $h(\sigma, m) = s(\sigma, m) := k_1^0(\sigma) + \cdots + k_m^0(\sigma)$, which is the count of all different cycle lengths in decomposition (1), $1 \le m \le n$, $0^0 := 0$. In this case we have

$$\lim_{r \to \infty} \overline{\lim_{n \to \infty}} \, \nu_n \left(\max_{r \leqslant m \leqslant n} \frac{|s(\sigma, m) - \log m|}{(2 \log m L L L m)^{1/2}} \ge 1 + \delta \right) = 0$$

and

$$\lim_{r \to \infty} \lim_{n \to \infty} \nu_n \left(\min_{r \leqslant m \leqslant n} \left| \frac{s(\sigma, m) - \log m}{(2 \log m L L L m)^{1/2}} - t \right| < \delta \right) = 1$$

J. Norkūnienė

for each $t \in [-1, 1]$ and $\delta > 0$. If $s(\sigma, m) = k$, then from the relation $k = s(\sigma, j(\sigma, k))$ it follows that last two assertions are also satisfied for $j(\sigma, k)$. The proof of Theorem 3 is completed.

References

- 1. R. Arratia, A.D. Barbour, S. Tavaré, *Logarithmic Combinatorial Structures: a Probabilistic Approach*, EMS Monographs in Math., The EMS Publishing House, Zürich (2003).
- 2. E. Manstavičius, The law of iterated logarithm for random permutations, *Lith. Math. J.*, **38**, 160–171 (1999).
- 3. G.J.Babu, E. Manstavičius, Brownian motion for random permutations, *Sankhya Ser. A*, **61**(3), 312–327 (1999).
- 4. H.-K. Hwang, Asymptotic of Poisson approximation of random discrete distributions, *Adv. Appl. Prob.*, **31**, 448–491 (1999).
- 5. V.V. Petrov, Sums of Independent Random Variables, Nauka, Moscow (1972) (in Russian).
- 6. E. Manstavičius, On the frequency of multisets without some components, *Liet. matem. rink.*, **40**(spec. issue), 55–60 (2000).

REZIUMĖ

J. Norkūnienė. Kartotinio logaritmo dėsnis kombinatorinėms multiaibėms

Nagrinėjamas adityvių funkcijų, apibrėžtų multiaibėse, sekų stiprusis konvergavimas.