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1. Introduction and results

In this paper we investigate the strong convergence of random variables given on se-
quences of probability spaces. We analyze mappings defined on a class of combina-
torial structures U , in some papers [1], [2] called multisets. Let σ be a combinatorial
structure of size n, consisting of components of sizes (k1, k2, ..., kn), kj = kj (σ ) � 0,
1 � j � n satisfying the condition

Ln(k̄) := k1 + 2k2 + ... + nkn = n. (1)

The vector k̄ = (k1, k2, ..., kn) is called structure vector of σ . A component of size j

may be taken with repetitions from some set having 1 � π(j) < ∞ elements. Then the
number of σ with the structure vector k̄ is

Nn(k̄) = 1(Ln(k̄) = n)

n∏
j=1

(
π(j) + kj − 1

kj

)
.

The number of structures of size n is p(n) := ∑
Ln(k̄)=n Nn(k̄), where the summation

is extended over vectors k̄ satisfying condition (1).
The fundamental examples of the class of multisets U are integer partitions, poly-

nomials over a finite field, additive arithmetical semigroups, forests of unlabeled trees,
mapping patterns and others.

Let νn be the uniform probability measure on the set Un ⊂ U of multisets of size n.
It is known [1], that, as n → ∞, the asymptotic distribution of kj (·) under νn for a
fixed j � 0 is negative binomial with parameters (π(j),q−j ),0 � j � n, where q > 1
is a parameter depending on U . We recall that this distribution is given by

P (γj = k) =
(

π(j) + k − 1
k

)
(1 − q−j )π(j)q−jk, k � 0. (2)

Let γ1, γ2, ..., γn be independent negative binomial random variables (r.vs) γj with
the parameters (π(j),q−j ), 1 � j � n, and q > 1. The relation (1) makes kj (·) de-
pendent and satisfying the conditioning relation

ν(k1(σ ) = k1, ..., kn(σ ) = kn) = P (γ1 = k1, ..., γn = kn|�n = n) (3)
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for k̄ = (k1, ..., kn) ∈ Z
+n. Here �n = 1γ1 + ... + nγn. We assume that the class of

multisets satisfies the following condition:

π(j) = θqj

j

(
1 + O(j−β)

)
(4)

for some β > 0. This implies the logarithmic condition (see [1]).
Using the method going back to probabilistic number theory and proposed by

E. Manstavičius [2] and generating functions analysis (see [4], [6]), we investigate
the strong convergence of random variables defined via kj (σ ), 1 � j < n.

Let G be an additive abelian group. A map h: Un → G is called an additive function
if it satisfies the relation

h(σ) =
n∑

j=1

hj

(
kj (σ )

)

for each σ ∈ Un, where hj (0) = 0 and hj (k), j � 1, k � 1 is some double sequence in
G. Let G = R,

h(σ,m) :=
m∑

j=1

hj

(
kj (σ )

)
, A(m) := θ

m∑
j=1

aj

j
, B(m) := θ

m∑
j=1

a2
j

j
.

Here aj := hj (1). As above, let γj , 1 � j � n be independent negative binomial r.vs,
�n = h1(γ1)+ ...hn(γn), and Sn = a1γ1 + ...anγn. As in [2], we compare distributions
of h(σ,n) with distribution of �n or Sn.

THEOREM 1. Let α(m) and β(m) be real sequences, β(m) > 0,β(m) ↑ ∞, as
m → ∞. Then the following assertions are equivalent:

lim
r→∞ lim

n→∞νn

(
max

r�m�n
β(m)−1

∣∣h(σ,m) − α(m)
∣∣ � ε

)
= 0, (5)

for each ε > 0 and

β(n)−1(Sn − α(n)
) → 0 P − a.s. (6)

COROLLARY 2. If β(m) → ∞ and the series

∞∑
j=1

|aj |p
jβ(j)p

converges for some 1 � p � 2, then relation (5) holds with α(m) = A(m).

Let Zn := (Sn − A(n))/β(n). We write Zn ⇒ [−1,1] if the sequence Zn is rel-
atively compact and the set of limit points is the interval [-1,1] with probability
one. Denote β(n) = (2B(n)LLB(n))1/2, where Lu := log max(u,e), u ∈ R, and
f (σ,m) = (

h(σ,m) − A(m)
)
/β(m). We now state the law of iterated logarithm.
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THEOREM 3. Suppose B(n) → ∞ and there exists a sequence b = b(n) → ∞,
b = o(n) such that B(n) = o(β2(b)). Then the following assertions are equivalent:

Zn ⇒ [−1,1] P − a.s.

and

lim
r→∞ lim

n→∞νn

(
max

r�m�n

∣∣f (σ,m)
∣∣ � 1 + δ

)
= 0,

but

lim
r→∞ lim

n→∞
νn

(
min

r�m�n

∣∣f (σ,m) − b
∣∣ < δ

)
= 1

for each b ∈ [−1,1] and δ > 0.

THEOREM 4. Let j (σ,1) < · · · < j(σ, s) be the sizes of components of σ and
s = s(σ ). Then

lim
r→∞ lim

n→∞ νn

(
max

r�m�s

∣∣ logj (σ,k) − k
∣∣

(2kLLk)1/2
� 1 + δ

)
= 0,

and

lim
r→∞ lim

n→∞
νn

(
min

r�m�s

∣∣∣ log j (σ,k) − k

(2kLLk)1/2
− b

∣∣∣ < δ

)
= 1

for each b ∈ [−1,1] and δ > 0.

2. Proofs

We will use the fundamental lemma and the tail probability estimates of conditional
distributions.

LEMMA 5 ([1]). If condition (4) is satisfied, then, in the above notation,

νn

((
k1(σ ), . . . , kb(σ )

) ∈ A
)

− P
(
(γ1, . . . , γb) ∈ A

) = O(n−1b)

uniformly in A ⊂ Z
+b.

LEMMA 6. Let (G,+) be an additive abelian group, A ⊂ G, and hj (k) be the G-
valued double sequence defining the additive function h: Un → G. If condition (4) is
satisfied, then

νn

(
h(σ) �∈ A + A − A

) = P (�n �∈ A + A − A|�n = n)

� C
(
P θ∧1(�n �∈ A) + n−θ

)
. (7)
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Proof of Lemma 6. The equality in (7) follows from (3). To prove the estimate, we
use Lemma A of the paper [3]. We need to show that the negative binomial r.vs satisfy
its assumptions. In our case condition (i) is obvious: P (γj =0) = (1−q−j )π(j)�c >0.

Condition (ii) concerns the probabilities P (�m) := P (�n = m) for 0 � m � n. We
have

P (�m) =
∑

Ln(k̄)=m

n∏
j=1

(
π(j) + kj − 1

kj

)
(1 − q−j )π(j)q−jkj

=
∏
j�n

(1 − q−j )π(j)q−mp(m).

Since the generating function of multisets is

Z(x) = 1 +
∑
k�1

p(k)zk =
∞∏

j=1

(1 − xj )−π(j), |z| < q−1.

using Proposition 3 from [4] we find the k-th Taylor coefficient of this generating
function:

q−mp(m) = K(θ)nθ−1(1 + O(n−β logn)
)
,

here K(θ) is a constant depending on the class of multisets. Then P (�n) 	 n−1 and

P (�m)/P (�n) � C
(
n/(m + 1)

)1−θ
, 0 � m � n − 1.

These are the required estimates in conditions (ii) and (iii) of Lemma A. We omit easy
technical estimates in the proof of

∑
jk=n

(
π(j) + k − 1

k

)
q−jk = O

(1

n

)

which is the remaining condition (iv) of this lemma. Lemma 5 is proved.

LEMMA 7. Let bn → 0, 1 � s � n and ε > 0. Then

νn

(
max

s�m�n
bm

∣∣∣ ∑
j�m

ajkj (σ ) − A(m)

∣∣∣ � ε

)

� C1(ε)

(
b2
sB(s) + θ

∑
s�j�n

b2
j
a2(j )

j

)θ∧1

+ C2n
−θ .

Proof of Lemma 7. Use Lemma 6 and Theorem 3.3.15 of [5].

Proof of Theorem 1. As in [2], at first we notice, that it suffices to consider the
linear function ĥ(σ,m) := a1k1(σ ) + · · · + amkm(σ). Following E. Manstavičius and
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G.J. Babu (see the proof of Theorem 1 in [3]), we have

νn

(
max

r�m�n
β(m)−1

∣∣h(σ,m) − ĥ(σ,m)
∣∣ � ε

)

� νn

( ∑
j�n

∣∣hj (kj (σ )) − ajkj (σ )
∣∣ � εβ(r)

)
= o(1),

From the Lemma 9.2.5 [5], one can see that relation (6) is equivalent to

P

(
sup
m�r

β(m)−1
∣∣S(m) − α(m)

∣∣ � ε

)

= lim
n→∞P

(
sup

r�m�n

β(m)−1
∣∣S(m) − α(m) � ε

∣∣) = o(1),

for each ε > 0 and r → ∞. From the conditioning relation (3) and Lemma 6 we have

νn

(
max

r�m�n
β(m)−1

∣∣h(σ,m) − α(m)
∣∣ � ε

)


 P 1∧θ

(
sup

r�m�n

β(m)−1
∣∣S(m) − α(m)

∣∣ � ε/3

)
+ n−θ .

Thus from (6) we obtain (5). Now using Lemma 5, we have

νn

(
max

r�m�b
β(m)−1

∣∣h(σ,m) − α(m))
∣∣ � ε

)

= P

(
sup

r�m�b

β(m)−1
∣∣Sm − α(m)

∣∣ � ε

)
+ o(1))

for each b = b(n), b → ∞, b = o(n) and r � b. Taking limits with respect to n, later
with respect to r , from (5) we deduce (6). Theorem is proved.

Proof of Theorem 2. The desired assertion can be obtained using the arguments from
the proof of Theorem 1, Lemma 5 and Lemma 6. See the proof of Theorem 2 in [2]
for details.

Proof of Theorem 3. At the beginning, we apply Theorem 2 to the additive function
h(σ,m) = s(σ,m) := k0

1(σ ) + · · · + k0
m(σ), which is the count of all different cycle

lengths in decomposition (1), 1 � m � n, 00 := 0. In this case we have

lim
r→∞ lim

n→∞νn

(
max

r�m�n

|s(σ,m) − logm|
(2 logmLLLm)1/2 � 1 + δ

)
= 0

and

lim
r→∞ lim

n→∞
νn

(
min

r�m�n

∣∣∣ s(σ,m) − logm

(2 logmLLLm)1/2 − t

∣∣∣ < δ

)
= 1
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for each t ∈ [−1,1] and δ > 0. If s(σ,m) = k, then from the relation k = s(σ, j (σ,k))

it follows that last two assertions are also satisfied for j (σ,k). The proof of Theorem 3
is completed.
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J. Norkūnienė. Kartotinio logaritmo dėsnis kombinatorinėms multiaibėms

Nagrinėjamas adityvi ↪u funkcij ↪u, apibrėžt ↪u multiaibėse, sek ↪u stiprusis konvergavimas.


