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On some cardinal invariants of space of finite subsets
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Abstract. In article is investigated relationshipsbetween some cardinal invariants of topological space and
it’s space of finite subsets with Vietoris topology. In general we note coincidence of them.
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All spaces are assumed to be Hausdorff. Points of space exp<ℵ0
X are finite subsets

of topological space. For finite subset P ⊂ X coresponds point (P ) ∈ exp<ℵ0
X.

DEFINITION [2]. Vietoris topology on the space of closed subsets of space X

exp X we call topology wich base is formed of sets 〈V,V1,V2, . . . ,Vm〉 there V and
Vi are open in X and 〈V,V1,V2, . . . ,Vm〉 = {(F )expX: F ⊂ V,F ∩ Vi �= �, i =
1, . . . ,m}.

Remark. The space exp<ℵ0
X is ocupated with Vietoris topology inducated from

exp X. The spaces exp�n X = {A: A ⊂ X,(A) � n} are also investigated. Obviesly⋃∞
n=1 exp�n X = exp<ℵ0

X.

THEOREM 1.Weight ω(x) of topological space X coincide with weight ω(exp<ℵ0
X)

of space exp<ℵ0
X.

Proof. Space X is closed embedable into space exp<ℵ0
X, so ω(x) � ω(exp<ℵ0

X).
On the other hand 〈⋃m

i=1 Vi,V1,V2, . . . ,Vm〉∗ = 〈⋃m
i=1 Vi,V1, . . . ,Vm〉∩exp<ℵ0

X

where Vi; i = 1, . . . ,m are sets belonging to some open base of x forms base of space
exp<ℵ0

X. Conseguently ω(exp<ℵ0
X) � ω(x).

THEOREM 2. Net weight nω(x) of topological space X coincide with net weight
nω(exp<ℵ0

X) of space exp<ℵ0
X.

Proof. Thus X is closed embedable into exp<ℵ0
X, so nω(x) � nω(exp<ℵ0

X). Let
Ñ is net of space X closed respectivelly to finite unions, than family N∗ where Ñ∗ =
{N∗}, on space exp<ℵ0

X (there N∗ = N ∩exp<ℵ0
X ) form net on exp<ℵ0

X. Really,
let (P ) ∈ exp<ℵ0

X, P = {p1, . . . ,pk} and pi ∈ Vi . V ∗ = 〈⋃m
i=1 Vi,V1, . . . ,Vm〉∗ it’s

neiberhood, than N∗ = (
⋃k

j=1 Nj)
∗, Nj ∈ N and N = ⋃k

j=1 Nj there pi ∈ Nj ⊂ Vi

for some j = 1, . . . , k has property (P ) ∈ N∗ ⊂ V ∗, concignently nω(expx) �
nω(x).
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THEOREM 3. Density of topological space X, d(x) coincide with density of space
exp<ℵ0

X, d(exp<ℵ0
X).

Proof. Let J is dens in space X and |J | = d(x). Then all finite sets of space X

J ∗ = {(P ): P ⊂ J ; |P | < ℵ0} is dense in exp<ℵ0
X and has capasity d(x). Really

for each basic set Ũ = 〈U,U1, . . . ,Uk〉 we have that exists pi ∈ J , that pi ∈ Ui , i =
1,2, . . . , k, but than P = {p1, . . . ,pk} is such that (P ) ∈ Ũ ((P ) ∈ J ∗).

On the other hand let J ∗ is family of finite subset and J ∗ is dense in exp<ℵ0
X and

|J ∗| = d(exp<ℵ0
X), than J = {p: p ∈ P , (P ) ∈ J ∗} is dence in X. Sufficent discust

neiberhoods of (X) 〈X,V 〉. Thus J ∗ is dence in exp<ℵ0
X, we can finde (P ) ∈ J ∗

that (P ) ∈ 〈X,V 〉 consiquently exists p ∈ P , that p ∈ V , so d(exp<ℵ0
X) � d(x).

THEOREM 4. Character of topological space X χ(X) coincide with character
of space exp<ℵ0

X χ(exp<ℵ0
X).

Proof. Thus X is embedable into exp<ℵ0
X then χ(X) � χ(exp<ℵ0

X). Let
(P ) ∈ exp<ℵ0

X P = {p1, . . . ,pk} pi �= pj ; i, j = 1,2, . . . , k and let U∗ =
〈U,U1, . . . ,Uk〉∗ it’s neiberhood such Ui ∩ Uj = � i �= j . Let observe collec-
tion 〈⋃k

i=1 Vi,V1, . . . ,Vk〉∗ where V1, . . . ,Vk are sets from local base’s of points pi

i = 1,2, . . . , k in space X such pi ∈ Vi ⊂ Ui for all i = 1, . . . , k.
Clare that capasity of family 〈⋃k

i=1 Vi,V1, . . . ,Vk〉∗ do not exside max{χ(pi), i =
1, . . . , k}. Conciquently χ(exp<ℵ0

X) � χ(X) and χ(X) = χ(exp<ℵ0
X).

THEOREM 5. Let X is topological space than pseudocharacter of space X −
pχ(X) is eguil to pseudocaracter of exp<ℵ0

X p(χ(exp<ℵ0
X)).

Proof. Thus X is embedable into exp<ℵ0
X then pχ(X) � p(exp<ℵ0

X) Invers in-
equality can be proof like in theorem 4.
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REZIUMĖ

G. Praninskas. Apie kai kuriuos baigtini ↪u poaibi ↪u erdvės kardinalinius invariantus

Čia ↪irodomi topologinės erdvės ir jos baigtini ↪u poaibi ↪u erdvės su Vietorio topologija svorio, tinklinio svo-
rio, tankio, charakterio ir pseudocharakterio sutapimas.


