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Abstract. In this paper, spatial data specified by auto-beta models is analysed by con-
sidering a supervised classification problem of classifying feature observation into one of
two populations. Two classification rules based on conditional Bayes discriminant function
(BDF) and linear discriminant function (LDF) are proposed. These classification rules are
critically compared by the values of the actual error rates through the simulation study.

Keywords: Bayes discriminant function; linear discriminant function; actual error rate; supervised
classification
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Introduction

An approach for spatial classification using Bayes rules was introduced by DuÄin-
skas [5]. This approach is based on conditional distributions of observations to be
classified given training sample for continuous spatial index. Case with discrete spa-
tial index for Gaussian Markov random fields is explored in [4, 6, 7]. General statistical
analysis of spatial non-gaussian data associated with exponential family and based
on generalized linear models has been analysed in [2, 13]. Spatial discrimination
based on BDF for feature observations having elliptically contoured distributions is
implemented in [1, 8].

In this paper we focus on auto-beta models introduced by Besag [2] for the case
when the sufficient statistic as well as the canonical parameter are one-dimensional.
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Moller [12] presented the simulation algorithms for several spatial one-parameter auto-
models. Specific attention will be paid to the multi-parameter auto-models that are
properly studied in [10, 9, 3]. We consider a particular case of spatial auto-beta models
for solving classification problem of feature observation by using plug-in discriminant
functions.

This paper is organized as follows: the problem description and the introduction of
spatial auto-beta model are presented in the first section and discriminant functions
and error rates are analyzed in the next section; in Section 3 numerical experiments
are described and the conclusions are in the last section.

1 Discriminant functions based on spatial auto-beta model
and corresponding error rates

In this paper we consider random fields {Z(s) : s ∈ D ⊂ R2} and {Y (s) : s ∈ D ⊂ R2}
as the feature and class label, respectively. Assume that feature values belong to (0, 1)
and class label takes value of 1 or 2. Suppose that Sn = {si ∈ D, i = 1, . . . , n} –
training locations (STL) where feature observations with known class label are taken
and feature values and class labels are denoted by Z(si) = Zi and Y (si) = Yi,
respectively, here i = 0, 1, . . . , n. A training sample is denoted by T = (Z ′, Y ′) where
Y = (Y1, . . . , Yn)

′, Z = (Z1, . . . , Zn)
′.

We focus on the spatial auto-beta models (SABE) and supervised classification
problem with fixed STL, when feature observation Z0, T = (Z ′, Y ′) are given. Then
conditional distribution for unlabeled observation Z0 under SABE model is

Z0

∣∣T = t, Y0 = l ∼ Beta(µ0l, φ0l).

Denote the full conditional density function for the feature by

f(z|a, b) = zµ
l
0φ
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l
0)φ
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where xi−m vector of explanatory variables and βlm unknown regression coefficients.
Ψ denotes the set of all model parameters. Be(µl0φ

l
0; (1− µl0)φl0) – is Euler Beta

function. Spatial auto-beta models have been recently studied by several authors
[11].

Then conditional BDF for SABE obtain the form
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population Ωl, l = 1, 2.
The prior probabilities depend on the location of focal observation and the number

of neighbours: πl0 =
∑
j∈NN l
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where dij is the distance between sites
si and sj , i, j = 1, . . . , n, NNi = NN1

i +NN2
i , where NN l

i are sites belonging to the
nearest neighbourhood set of si in population Ωl, l = 1, 2.
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So BDF allocates the observation in the following way: classify observation Z0

given Z = z to the population Ω1 if W (Z0;Ψ) > 0 and to the population Ω2, other-
wise.

We compare BDF with LDF for SABE in order to classify testing samples. In this
work a modified LDF function is used where class conditional means and dispersions
are used for the estimation. The modified LDF function:

L(Z0;Ψ) =

((
Z0 −

µ1 + µ2

2

)/(
π1
0σ

2
1 + π2

0σ
2
2

))(
µ1 − µ2

)
+ γ∗0 (Ψ), (3)

where γ∗0 (Ψ) = ln(π1
0/π

2
0), πl0, – prior probability, µl, σ2

l – conditional means and
variance for the distribution Beta(µ0l;φ0l), l = 1, 2.

From the statistical decisions theory it is known that Bayes discriminant functions
ensures the minimum of misclassification probability.

Definition 1. The Bayes error rate for the W (Z0;Ψ) specified in (2) is defined as

ER
(
Ψ
)
=

2∑
l=1

πl0Pl, (4)

where for l = 1, 2, Pl = Plz((−1)lW (Z0;Ψ) > 0) =
∫
H((−1)lW (z0;Ψ))f0l(z0)dz0

withH(·) denoted the Heaviside step function: H(ν) := 1ν>0 and probability measure
Plz is based on conditional Beta distribution with pdf f0l specified in (1).

The error rate for L(Z0;Ψ) specified in (3) which is denoted by LER(Ψ) is defined
in (4), when W (Z0;Ψ) is replaced by L(Z0;Ψ).

In practice parameter estimators are obtained by maximizing the pseudo-likelihood
function, i.e.:

LPML(Ψ) =

n1∏
i=1

fi1

n∏
i=n1+1

fi2,

Ψ̂ = argmax
Ψ

{
log
(
LPML

(
Ψ
))}

.

(5)

By replacing the parameters with their estimators in W (Z0;Ψ) and L(Z0;Ψ) we con-
struct their plug-in versions denoted by W (Z0; Ψ̂) and L(Z0; Ψ̂).

Definition 2. The actual error rate for the W (Z0; Ψ̂) is

AR(Ψ̂) =

2∑
l=1

πl0P̂l, (6)

where P̂l = Plz((−1)lW (Z0; Ψ̂) > 0), for l = 1, 2.

The actual error rate for the L(Z0; Ψ̂) which is denoted by LAR(Ψ̂) is defined
in (6), when W (Z0; Ψ̂) is replaced by L(Z0; Ψ̂).
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2 Numerical experiments

To evaluate proposed classification procedure a few different scenarios were chosen
that differ in model shape defined by different parameter values. Based on the chosen
parameter scenarios and using the first order neighbour scheme S = [1, N ]× [1, N ]:
each site i ∈ S has four neighbours denoted as {ie = i + (1, 0), iw = i − (1, 0), in =
i + (0, 1), is = i − (0, 1)} with obvious neighbour adjustments near the boundary.
Conditional natural parameter expressions are chosen for population:

Ali1 = βl1x1 + βl2x2 −
(
η1
(
ln(1− zje) + ln(1− zjw)

)
+ η2

(
ln(1− zjn) + ln(1− zjs)

))
,

Ali2 = βl3x1 + βl4x2 −
(
η1
(
ln(zje) + ln(zjw)

)
+ η2

(
ln(zjn) + ln(zjs)

))
.

In this case parameter vector Ψ l = (βl1, β
l
2, β

l
3, β

l
4, η1, η2) First, based on the chosen

parameter scenarios, 100 replications of data were generated. Each simulation was
divided into two sets: 80% training sample and 20% testing sample. In the learning
stage, training sample is used to build the model and in the testing stage sample is
used to compare classification rules. In the learning stage all feature values of the
attributes and spatial dependency are used to build the model and in the testing step
one value is hidden. In this stage model parameter vector is considered unknown and
model parameters are evaluated using maximum pseudo-likelihood method described
in (5). Therefore, simulations are conducted on the lattice size n = 16× 16. Two types
of parametrical structures were chosen: when all parameters are fixed except the class
2 mean tendency parameter and when spatial dependency parameter that describes
effects of the north-south neighbourhood points is changing. Chosen parameter values
are presented in Table 1.

The calculations were performed using 3 kinds of prior probabilities: 1) when
π1
0 = π2

0 = 0.5 and actual error rate is noted as AR1; 2) using inverse distance
function with all training sample points AR2; 3) using inverse distance function for
neighbour points of up to fourth order AR3 The Actual error rate ratio for different
priors is presented in Fig. 1.

In both cases when beta parameter changes and when eta parameters change the
ratio AR1/AR3 and AR2/AR3 is greater than 1, i.e. the smallest AR estimates are
obtained when priors are calculated using the third method. Actual error rate values
were compared for different classification rules when prior probabilities are calculated
by the third method described above.

Actual error rate ratio curves are presented in A part of Fig. 2. When beta values
are chosen less than 1 the ratio is greater than 1 and LDF based classification rule

Table 1. Parametric structures.

Parameter Structure Paramter values

β1 A, B β1
1 = β1

2 = β1
3 = β1

4

β2 A β2
1 = β2

2 = 1, β2
3 = β2

4 = β,
β = 0.125; 0.25; 0.5; 2; 3; 4; 5; 6; 7; 8; 9; 10; 20; 30; 40; 50.

B β2
1 = β2

2 = 1, β2
3 = β2

4 = 2

η A η1 = 1, η2 = 2
B η1 = 1, η2 = 0.125; 0.25; 0.5; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 20; 30; 40; 50
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Fig. 1. AR(Ψ̂) ratio curves with different prior
probability.

Fig. 2. AR(Ψ̂) and LAR(Ψ̂) ratio curve with
respect to β and η.

is performing better. When β > 1 the ratio decreases and BDF based classification
rule gains advantage. In B part when eta is chosen less than 10 the ratio is less than
1 and BDF based classification rule is performing better. When eta value is chosen
25 or greater LDF based classification rule gains advantage.

3 Discussion and conclusions

In this paper we proposed two classification rules for non-gaussian spatial data based
on auto-beta models in the frameworks of Bayesian and linear discriminant func-
tions. Simulation data study was conducted to estimate and empirically compare the
BDF classifier with LDF classifier for various parametric structures and prior class
probability models. Numerical analysis showed that:

1. While considering the situations with different prior probabilities better results
are achieved by including fourth order neighbours in calculating prior proba-
bilities in cases when prior probabilities are equal and when prior probabilities
include all training points.

2. In situation when all parameters are fixed except for the second class mean
tendency parameter the results show that class separability increases when mean
tendency parameters increase. When β < 1 LDF has advantage and when β > 1
DBF performs better.

3. In situation when all parameters are fixed except for the spatial dependency pa-
rameter that is common for both classes the results yield that class separability
decreases when spatial dependency parameter increases, and Actual error rate
approximates 1.

The results of performed calculations in all examples give us the strong argument
to encourage the users to consider non-gaussian spatial data models directly ignoring
various data normalization procedures.
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REZIUMĖ

Erdvinių auto-beta modelių taikymas statistiniame klasifikavime
E. Zikarienė, K. Dučinskas
Straipsnyje pristatomos naujos statistinio klasifikavimo taisyklės erdviams auto-beta modeliams.
Jos paremtos sąlygine Bajeso ir tiesine diskriminantinėmis funkcijomis. Sprendžiamas uždavinys,
kai erdvės taškas klasifikuojamas į 1 iš 2 populiacijų, su žinoma požymo reikšme ir mokymo aibe.
Populiacijos apibrėžiamos regresoriais, bendraisiais ir klasių parametrais. Visi skaičiavimai atlikti
simuliuotiems duomenims, su keletu skirtingų modelio parametrų rinkinių. Siūlomos klasifikavimo
taisyklės palyginamos skaičiuojant tikrąją klasifikavimo klaidą, su skirtingais apriorinių tikimybių
vertinimais.
Raktiniai žodžiai: Bajeso diskriminantinė funkcija; tiesinė diskriminantinė funkcija; tikroji klasifika-
vimo klaida; prižiūrimas klasifikavimas
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