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1. Introduction

V. Glivenko proved in [4] that a propositional formula beginning with ‘¬ ’ is derivable
in a classical propositional calculus iff it is derivable in an intuitionistic propositional
calculus. In [6], classes of sequents (called purely Glivenko and Glivenko σ -classes)
are presented. Every sequent which belongs to some of these classes is derivable in
a classical predicate sequent calculus iff it is derivable in an intuitionistic predicate
sequent calculus.

LB and LBJ are sequent calculi of first-order classical and intuitionistic temporal
logics with time gaps, respectively. Similar classes for LB and LBJ are given in [2].
In the present paper, we show that the Glivenko classes (i.e., purely Glivenko and
Glivenko σ -classes) are LBJ completeness with respect to TBJ classes.

The paper is organized as follows. First, we present shortly the semantics of the
first-order classical temporal logic TB and then the semantics of its intuitionistic coun-
terpart TBJ. Then we introduce a sequent calculus LB for TB, sequent calculi LBJ and
LBJ* for TBJ, and give some properties of the calculi. In the end, Glivenko σ -classes
are defined and it is shown that these classes are LBJ completeness with respect to TBJ
classes.

2. Semantics of TB

The class of admitted time structures for the traditional logic of discrete linear time
TL is the class of structures order isomorphic to ω. Let us call such a structure an ω-
segment. In such a segment, there is always an earliest point, for every point there is
a unique next point and every point can be reached from the earliest point by passing
finitely often to the next point. An admitted time structure J for TB is a structure
order isomorphic to a well-founded tree of ω-segments (see [3]). For every point in J ,
there is a unique next point, but also points ‘after the gap’ (which cannot be reached
by successively passing on to the next point) which are initial points in the next ω-
segments.

A TB structure K is a tuple 〈J , {Di}i∈J , {si}i∈J 〉, where Di �= ∅ is a set called
the domain at the state i, Di ⊆ Dj if i � j ; it is also assumed that D0 contains all
the constants of the language; si is a function mapping constants and free variables to
elements of Di , n-ary function symbols to functions from Dn

i to Di , predicate symbols
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of arity 0 to {⊥,�} and predicate symbols of arity n > 0 to functions from Dn
i to

{⊥,�}. Also: 1) si(d) = d for every d ∈ Di , 2) if si(t) = d , then sj(t) = d for any
term t and j � i, and 3) si (F ) = ⊥.

The valuation functions Ki are defined in the traditional way. See also [3].
The valuation functions Ki for sequents are defined as follows: Ki(� → �) = � if

there is a formula B ∈ � such that Ki(B) = ⊥ or there is a formula C ∈ � such that
Ki(C) = �, and Ki(� → �) = ⊥, otherwise.

A formula A (a sequent �) is satisfied in a TB structure K = 〈J , {Di}i∈J , {si}i∈J 〉,
we write K |= A (K |= �), iff K0(A) = � (K0(�) = �). A (�) is valid in TB, T B |=
A (T B |= �), iff A (�) is valid in every TB structure.

3. Semantics of TBJ

A framework of an admitted time structure for TBJ is an admitted time structure for
TB; as earlier, we denote it by J . (An admitted time structure for TBJ can be thought
of as a well-founded tree of ω-segments, the points themselves in the ω-segments
being partially ordered sets satisfying certain conditions; admitted time structures for
TBJ are formally defined as follows.) Suppose that E and E1 are partially ordered sets.
If (l ∈ E) ⇒ (l ∈ E1) and (l � m in E) ⇒ (l � m in E1), then we write E � E1. Let us
denote by E the class of partially ordered sets and by f a function: J � i → f (i) ∈ E ,
where f (i) � f (j) if i � j . The class of admitted time structures for TBJ is the class
of pairs (J ,f ). Elements of the sets f (i) are considered to be time points in TBJ. The
time point l ∈ f (i + 1) is considered to be next to the time point l ∈ f (i).

A TBJ Kripke frame K̄ is a tuple 〈(J ,f ), {Di,l}i∈J ,l∈f (i), {si,l}i∈J ,l∈f (i)〉, where
Di,l �= ∅ is a set called the domain at the time point l of the state i, Di,l ⊆ Di,n if l � n,
and Di,l ⊆ Dj,l if i � j ; it is also assumed that D0,0 contains all the constants of the
language; si,l is a function mapping constants and free variables to elements of Di,l ,
n-ary function symbols to functions from Dn

i,l to Di,l , predicate symbols of arity 0 to
{⊥,�} and predicate symbols of arity n > 0 to functions from Dn

i,l
to {⊥,�}; also:

1) si,l (d) = d for every d ∈ Di,l , 2) if si,l(t) = d , then 2.1) si,k(t) = d for any term
t and k � l, and 2.2) sj,l(t) = d for any term t and j � i, and 3) si,l (F ) = ⊥. It is
also assumed that 1) if si,l(P ) = �, then si,m(P ) = � for every m � l, where P is
a predicate symbol of arity 0 and 2) if si,l(R)(si,l (t1), . . . , si,l(tn)) = �, n > 0, then
si,m(R)(si,m(t1), . . . , si,m(tn)) = � for every m � l, where ti are terms and R is an
n-ary predicate symbol.

The valuation functions Ki,l (l ∈ f (i)) for TBJ formulas are defined as follows.
1) A = P (t1, . . . , tn): Ki,l(A) = si,l (P )(si,l(t1), . . . , si,l(tn)), where P is an n-ary

predicate symbol (n � 0).
2) A =F : Ki,l(F ) = si,l(F ) = ⊥.
3) A = B ∧ C: Ki,l(A) = � if Ki,l(B) = Ki,l(C) = �, and = ⊥, otherwise.
4) A = B ∨ C: Ki,l(A) = � if Ki,l(B) = � or Ki,l(C) = �, and = ⊥, otherwise.
5) A = B ⊃ C: Ki,l (A) = � if Ki,m(B) = ⊥ or Ki,m(C) = � for every m � l, and

= ⊥, otherwise.
6) A = ∀xB(x): Ki,l (A) = � if Ki,m(B(d)) = � for every m � l and every d ∈

Di,m, and = ⊥, otherwise. Here B(d) is obtained from B(x) by substituting d for
every occurrence of x in B(x).
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7) A = ∃xB(x): Ki,l(A) = � if Ki,l(B(d)) = � for some d ∈ Di,l , and = ⊥, other-
wise. Here B(d) is obtained from B(x) by substituting d for every occurrence of
x in B(x).

8) A = ©B: Ki,l (A) = � if Ki+1,l(B) = �, and = ⊥, otherwise.
9) A = �B: Ki,l(A) = � if Kj,l(B) = � for every j � i, and = ⊥, otherwise.
The valuation functions Ki,l for sequents are defined as follows: Ki,l(� → �) = �

if there is a formula B ∈ � such that Ki,m(B) = ⊥ or there is a formula C ∈ � such
that Ki,m(C) = � for every m � l, and Ki,l (� → �) = ⊥, otherwise.

A formula A (a sequent �) is valid in a TBJ Kripke frame K̄ = 〈(J ,f ),

{Di,l}i∈J ,l∈f (i), {si,l}i∈J ,l∈f (i)〉, we write K̄ |= A (K̄ |= �), iff Ki,l (A) = � (Ki,l (�)
= �) for every l ∈ f (i) and every i ∈ J . A (�) is valid in TBJ, T BJ |= A (T BJ |=
�), iff A (�) is valid in every TBJ Kripke frame.

LEMMA 3.1. Let A be a formula and K be a TB structure such that K �|= A. Then
there is a TBJ Kripke frame K̄ such that K̄ �|= A.

Proof. Let K = 〈J , {Di}i∈J , {si}i∈J 〉. Let f (i) = {1}, Di,1 = Di , and si,1 = si
for every i ∈ J . Let K̄ = 〈(J ,f ), {Di,1}i∈J , {si,1}i∈J 〉. Clearly, K̄ is a TBJ Kripke
frame. Let n denote the number of occurrences of propositional connectives, quanti-
fieres, and temporal operators in A. By induction on n, we prove that if Ki(A) = �,
then Ki,1(A) = �, and if Ki(A) = ⊥, then Ki,1(A) = ⊥.

Base case: n = 0. The proof follows from the fact that si,1 = si .
Inductive case: n > 0. We consider only some cases.
Let A = B∨C. 1) Let Ki(A) = �, then Ki(B) = � or Ki(C) = �. By the inductive

hypothesis, Ki,1(B) = � or Ki,1(C) = �, therefore Ki,1(A) = �. 2) Let Ki(A) = ⊥.
Then Ki(B) = ⊥ and Ki(C) = ⊥. By the inductive hypothesis, Ki,1(B) = ⊥ and
Ki,1(C) = ⊥, therefore Ki,1(A) = ⊥.

A = B ⊃ C. 1) Let Ki(A) = �, then Ki(B) = ⊥ or Ki(C) = �. By the inductive
hypothesis, Ki,1(B) = ⊥ or Ki,1(C) = �, therefore Ki,1(A) = �. 2) Let Ki(A) =
⊥, then Ki(B) = � and Ki(C) = ⊥. By the inductive hypothesis, Ki,1(B) = � and
Ki,1(C) = ⊥, therefore Ki,1(A) = ⊥.

A = �B. 1) Let Ki(A) = �, then, for every j � i, Kj(B) = �; by the induc-
tive hypothesis, Kj,1(B) = �, therefore Ki,1(A) = �. 2) Let Ki(A) = ⊥, then there
is j � i such that Kj (B) = ⊥; by the inductive hypothesis, Kj,1(B) = ⊥, therefore
Ki,1(A) = ⊥.

Now suppose that A is a formula, K is a TB structure, and K �|= A. Then K0(A) =
⊥, K0,1 = ⊥ and K̄ �|= A.

4. Deduction systems

Sequent Calculus LB for classical temporal logic with time gaps TB is obtained from
a variant of Gentzen’s sequent calculus LK (without structural rules) by adding some
rules for temporal operators which are taken from [3] and slightly changed by us. The
sequent calculus LBJ for intuitionistic temporal logic with time gaps TBJ is obtained
from LB by introducing the restriction that sequents can have at most one formula
in the succedent. The sequent calculus LBJ* is a multisuccedent version of LBJ. The
calculi LB, LBJ, and LBJ* can be found in [2].
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4.1. Some properties of LB, LBJ, and LBJ*

The structural rules of weakening and contraction and the rule of cut is admissible in
LB, LBJ, and LBJ*. For proofs, we refer to [2].

A sequent or a formula with no free variables is called a sentence.

THEOREM 4.1. LB is sound for TB: if a sentence is derivable in LB, then the sen-
tence is valid in TB.

Proof. The theorem is proved in the same way as Theorem 3.7 in [3].

This theorem does not hold if ‘sentence’ is replaced by ‘sequent’. E.g., the sequent
� = ∀x♦P (x,a) → ♦P (a,a), where ♦ = ¬�¬, is derivable in LB. Taking P to be
’<’, we get ∀x♦(x < a) → ♦(a < a). Let T = ω, Di = N , si(a) = i. Then, ∀n ∈
N(n < sn+1(a) = n + 1). We have a countermodel for �. If a is a constant, e.g. 2,
then ∀n ∈ N(sn(2) = 2), and the above structure is not a countermodel in this case.

Let us take another example. LB � � = ♦P (b,a) → ∃x♦P (x,a). Assuming that
P is ’<’, we get ♦(b > a) → ∃x♦(x > a). Let T = ω, D0 = {1}, Di = {1,2} for i > 0,
si(a) = 1, and si(b) = 2 for all i. It is easy to see that K0(�) = ⊥ even if a and b are
constants, e.g., a = 1 and b = 2. However, this is not a TB structure, because D0 has
to have all the constants, thus 2 ∈ D0, and we have no countermodel in this case.

THEOREM 4.2. LB is complete for TB: if a sequent is valid in TB, then it is deriv-
able in LB.

Proof. The theorem is proved as Theorem 4.1 in [3].

Below we prove that LBJ is sound but incomplete with respect to TBJ.

LEMMA 4.3 (monotonicity property). Let Ki,l be a valuation function defined via a
TBJ Kripke frame K̄ . If A is a formula and Ki,l(A) = �, then Ki,m(A) = � for every
m � l.

Proof. The lemma is proved by induction on the number of occurrences of propo-
sitional connectives, quantifiers, and temporal operators in A.

Base case. The proof follows from the definition of si,l .
Inductive case. We consider only some cases. Let m ∈ f (i) and m � l.
Let A = ∃xB(x). There is d ∈ Di,l such that Ki,l (B(d)) = �. d ∈ Di,m (since

Di,l ⊆ Di,m). By the inductive hypothesis, Ki,m(B(d)) = �. Hence Ki,m(A) = �.
A = ©B. Ki+1,l(B) = �. By definition of the function f , we have that m � l in

f (i + 1). Hence Ki+1,m(B) = � by the inductive hypothesis. This yields Ki,m(A) =
�.

A = �B. Kj,l(B) = � for every j � i. We have that m � l in f (j). Hence
Kj,m(B) = � by the inductive hypothesis. This gives Ki,m(A) = �.

Let � → � be a sequent. We write Ki,l(�) = � if � �= ∅ and Ki,l(B) = � for every
B ∈ �. We also write Ki,l (�) = � if there is B ∈ � such that Ki,l(B) = �.
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THEOREM 4.4 (soundness). Let Calc ∈ {LBJ,LBJ ∗}. If Calc �V � → �, then
T BJ |= � → �, where � → � is a sentence.

Proof. The lemma is proved by induction on h(V ). We prove the lemma for Calc =
LBJ . The proof for Calc = LBJ ∗ is almost the same.

Base case: h(V ) = 0. This case is obvious.
Inductive case: h(V ) > 0.

� → �
(i).

We consider only some cases.
(i) = (→⊃):

�,A → B

� → A ⊃ B
(→⊃).

Let Ki,l (�) = �, m ∈ f (i), and m � l. By Monotonicity property (see above), we have
that Ki,m(�) = �. If Ki,m(A) = ⊥, then Ki,m(A ⊃ B) = �; if Ki,m(A) = �, then
Ki,m(B) = � by the inductive hypothesis and therefore Ki,m(A ⊃ B) = �. Finally,
Ki,l (A ⊃ B) = �.

(i) = (©1):

� → A

�,©� → © A
(©1).

Let Ki,l(©�) = �. Then Ki+1,l(�) = � and, by the inductive hypothesis, Ki+1,l(A) =
�. Hence Ki,l (©A) = �.

(i) = (�):

�� → A

�,�� → �A
(�).

Let Ki,l(��) = � and y � i. Kj,l(�) = � for every j � y � i. We have that
Ky,l(��) = �. By the inductive hypothesis, Ky,l(A) = �. Hence Ki,l(�A) = �.

(i) = (→ ∀):

S = � → A(b)

� → ∀xA(x)
(→ ∀).

Here S is not a sentence, and we cannot apply the inductive hypothesis. However,
it is easy to show by induction on h(V ) that LBJ �V �(a) ⇒ LBJ �V ′

�(c) and
h(V ′) � h(V ), where �(a) is a sequent in which a free variable a occurs, and �(c)

is obtained from �(a) by substituting a constant c for every occurrence of a in �(a).
Thus, we get S′ = � → A(c) instead of S, where c does not occur in S. Now we can
apply the inductive hypothesis to S′ and argue further in the traditional way. The case
when (i) = (∀ →) is similar, because the conclusion is a sentence and therefore no
free variable occurs in it; if free variables are introduced in the premise, then we can
substitute constants for the occurrences of free variables just as above.

THEOREM 4.5. LBJ is incomplete w.r.t. TBJ.
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Proof. The sequent � = ©(A ∨ B) → ©A ∨ ©B is derivable in LBJ*. This and
Theorem 4.4 imply that T BJ |= �. However, � is not derivable in LBJ.

By considering the sequent ©(A ∨ B) → ©A ∨ (E ⊃ ©B), one can see that LBJ* is
not complete for TBJ, either.

5. Glivenko σ -classes

THEOREM 5.1. Let (∗) be a property of sequents such that if a sequent satisfies
(∗), then the sequent is derivable in LBJ iff it is derivable in LB. If � satisfies (∗), then
LBJ � � iff T BJ |= �.

Proof. (⇒): The proof follows from Theorem 4.4.
(⇐): Assume that a sequent � satisfies (∗) and LBJ �� �. Then LB �� �. As LB is

complete for TB (Theorem 4.2), there is a TB structure K such that K �|= �. It follows
from Lemma 3.1 that then there is a TBJ Kripke frame K̄ such that K̄ �|= �. Hence
T BJ �|= �.

Now, following [6], we define σ -classes and purely Glivenko σ -classes. Let � ∈
A = {∨,∧,⊃,∃,∀,©,�}. An occurrence of � in a formula or a sequent is called an
occurrence of the type �+ (�−) if � is a positive (negative) occurrence in this formula
or sequent. A set {Uα1

1 , . . . ,U
αn
n }, where Ui ∈ A (see above) and αi ∈ {−,+}, is called

a σ -class. A sequent S belongs to a σ -class {Uα1
1 , . . . ,U

αn
n } iff there are no occurrences

of U1, . . . ,Un of the type U
α1
1 ,. . . , U

αn
n , respectively, in S. A σ -class A is contained

in a σ -class B if every sequent which belongs to A also belongs to B (note that then
B ⊆ A).

A sequent with one formula in succedent is called a singular sequent. A σ -class
is called a purely Glivenko σ -class if every singular sequent which belongs to it is
derivable in LB iff it is derivable in LBJ.

THEOREM 5.2. A σ -class is a purely Glivenko σ -class iff it is contained in at least
one of the following 10 σ -classes:
{∨−,⊃+}; {⊃−,∨+,∃+}; {©+,©−,⊃+,∀+}; {©+,©−,⊃+,∀−}; {©+,�+,⊃+,∀+};
{©+,�+,⊃+,∀−}; {©−,�−,⊃+,∀+}; {©−,�−,⊃+,∀−}; {©+,�−,⊃+,∀+};
{©+,�−,⊃+,∀−}.

A σ -class A is called a Glivenko σ -class if every sequent with empty succedent
which belongs to A is derivable in LB iff it is derivable in LBJ.

THEOREM 5.3. A σ -class is a Glivenko σ -class iff it is contained in at least one of
the following 10 σ -classes:
{⊃−}; {⊃+,∨−}; {⊃+,∀−,©+,©−}; {⊃+,∀−,©+,�+}; {⊃+,∀−,©+,�−};
{⊃+,∀+,©+,©−}; {⊃+,∀+,©+�−}; {∀+,©+,�+}; {⊃+,∀+,©−,�−};
{⊃+,∀−,©−,�−}.
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Proofs of Theorems 5.2 and 5.3 can be found in [2].

THEOREM 5.4. Purely Glivenko and Glivenko σ -classes are LBJ completeness
with respect to TBJ classes.

Proof. The proof follows from Lemma 5.1.
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REZIUMĖ

R. Alonderis. Pilnumo klasės intuicionistinei pirmos eilės laiko logikai su laiko tarpsniais

Darbe yra pateikiama pirmos eilės intuicionistinė laiko logika TBJ su laiko tarpsniais. Parodoma, kad šios
logikos sekvencinis skaičiavimas LBJ yra korektiškas, tačiau nepilnas logikosTBJ atžvilgiu. Apibrėžiamos

Glivenko sekvencij ↪u klasės skaičiavimui LBJ bei jo klasikiniam atitikmeniui LB. Sekvencija priklausanti

kuriai nors Glivenko klasei yra ↪irodoma skaičiavime LB tada ir tik tada, kai ji yra ↪irodoma skaičiavime

LBJ. Glivenko klasės apibrėžiamos sekvencijoms, kuri ↪u sukcedentas susideda iš vienos formulės (visiškai

Glivenko σ -klasės), ir sekvencijoms turinčioms tušči ↪a sukcedent ↪a (Glivenko σ -klasės). Parodoma, kad
Glivenko klasės yra LBJ pilnumo logikos TBJ atžvilgiu klasės.


