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Abstract. The present paper deals with efficiency improvement of backward proof-search
of sequents of propositional linear temporal logic, using a loop-type sequent calculus. The
improvement is achieved by syntactic transformation of sequents into equivalent to them
simpler ones. It is proved that some formulas can be removed from sequents with no impact
on their derivability.
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1 Introduction

Propositional linear temporal logic (PLTL) is used in computer science for specifica-
tion and verification of programs [2, 5]. Sequent calculi are convenient tools for check
of formula validity by means of proof-search. Various tableaux and sequent deduc-
tive systems are considered in the literature: tableaux proof-search systems [9, 13];
infinitary sequent calculi containing ω-type induction rule [10]; sequent calculi with
invariant-like rule [7, 11, 12]; saturated sequent calculi [8]; a cut-free and invariant-free
sequent calculus [4]; loop-type sequent calculi based on sequent history method [3, 6];
loop-type sequent calculus based on derivation loop check [1]. Backward proof-search
using the sequent calculus GLT introduced in [1] involves checks of global condi-
tions, so called derivation loops. The checks hinder efficiency of proof-search. The
present paper concerns with some partial methods allowing us to make proof-search
shorter, reducing the number of the checks and hence making the proof-search more
efficient. This is achieved by syntactic transformation of sequents into equivalent to
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2 R. Alonderis

them simpler ones. It has been proved that some formulas can be removed from se-
quents with no impact of their derivability. The present paper is organized as follows.
In Section 2, we recall the syntax and semantics of PLTL and the calculus GLT.
The correct sequents are defined in Section 3. Sequent simplification and backward
proof-search reduction are considered in Section 4. Some concluding remarks are in
Section 5.

2 Syntax, semantics, and sequent calculus GLT

The language of PLTL contains a set P of propositional symbols {p, p1, p2, . . . , q, q1,
q2, . . . }; the logical operators ¬,∨,∧,⊃, temporal operators □ (“henceforth always”)
and ⃝ (“next”). The language does not contain the temporal operator ♢ (“sometimes”),
assuming that ♢ϕ = ¬□¬ϕ. Propositional symbols are called atomic formulas. The
formulas ϕ of PLTL are inductively defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ ⊃ ψ | ⃝ϕ | □ϕ.

The Greek letters ϕ and ψ are used to denote arbitrary formulas. The expression ⃝n

denotes the sequence of n ‘⃝’-s, e. g., ⃝2p = ⃝⃝p.
An interpretation M = (N, I) consists of the set of natural numbers N and the

function I : N 7→ 2P, where 2P is the set of subsets of P. The semantics of PLTL
formulas is provided by the satisfaction relation |=:

M, j |= p, iff p ∈ I(j);

M, i |= ¬ϕ, iff M, i ̸|= ϕ;

M, i |= ϕ ∨ ψ, iff M, i |= ϕ or M, i |= ψ;

M, i |= ϕ ∧ ψ, iff M, i |= ϕ and M, i |= ψ;

M, i |= ϕ ⊃ ψ, iff M, i ̸|= ϕ or M, i |= ψ;

M, i |= ⃝ϕ, iff M, i+ 1 |= ϕ;

M, i |= □ϕ, iff M, j |= ϕ, for all j ⩾ i.

An interpretation M is a model for a formula ϕ, iff M, 0 |= ϕ. A formula ϕ is
called valid, |= ϕ in notation, iff every interpretation is a model for ϕ

The sequent calculus GLT is defined in [1]. We recall here some definitions. The
temporal rules:

|Γ ⇒ ∆|
Σ,⃝Γ ⇒ ⃝∆,Σ′ (⃝),

|ϕ,⃝□ϕ, Γ ⇒ ∆|
□ϕ, Γ ⇒ ∆

(□ ⇒),

|Γ ⇒ ∆,ϕ| |Γ ⇒ ∆,⃝□ϕ|
Γ ⇒ ∆,□ϕ

(⇒ □).

Here: Γ,∆,Σ,Σ′ denote finite, possibly empty, multisets of formulas, where Σ ∪ Σ′

consists of atomic formulas; the conclusion is not an axiom and Γ ∪∆ ̸= ∅ in (⃝).
Given a sequent S, a GLT proof-search tree with the sequent S at the root is

constructed in usual way by subsequently applying backwards the GLT derivation
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More efficient proof-search for sequents of temporal logic 3

rules to S and the sequents obtained in the course of the tree construction. A proof
search tree is denoted by V . The expression V (S) denotes that S is the root of V .

We say that a sequent S′ subsumes S (S′ ⪰ S in notation), iff S′ can be inferred
from S by the structural rule of weakening. If S′ = S, then we say S′ strongly
subsumes S.

Definition 1. Given a proof-search tree, the upward path p from some sequent S in
the tree to S′ inclusive is called a (strong) derivation loop, [S − S′] in notation, iff:
1) the length of p is greater than 0 and 2) S′ ⪰ S (S′ = S). The nodes marked with
S and S′ are called the base and terminal of [S − S′], respectively. The sequents S
and S′ are called the base and terminal sequents of [S − S′], respectively. It is true
that λ(S) ⩽ λ(S′).

Definition 2. A (strong) derivation loop [S − S′] is called a (strong) derivation loop
with the universality formula □ϕ, iff: 1) S = (Γ ⇒ ∆, θ), 2) S′ = Π,Γ ⇒ ∆, θ, Λ
where θ ∈ {□ϕ,□ϕ}, and 3) [S − S′] contains the right premise of (⇒ □ϕ), and does
not contain the left premise of (⇒ □ϕ).

If a derivation loop is not the derivation loop with a universality formula, then
the derivation loop is called α-void.

The following proposition is proved in [1]:

Proposition 1. Any derivation loop [S − S′] has an application of (⃝).

Definition 3. A sequent S is called derivable in GLT (⊢ S in notation), iff there
exists a backward proof-search tree V (S) such that each leaf of V (S) is an axiom or
a terminal sequent of a derivation loop with some universality formula. Such a tree
V (S) is called a derivation of S or a derivation tree.

3 Correct sequents

We write ψ ≡ ϕ, iff M, i |= ψ implies M, i |= ϕ and vice versa for any pair M, i.

Proposition 2.
⃝(ϕθψ) ≡ ⃝ϕθ⃝ψ, ⃝ηϕ ≡ η⃝ϕ,

where θ ∈ {∨,∧,⊃} and η ∈ {□,¬}.

Proof. Let us consider, e.g., the case when η = □. If M, i |= ⃝□ψ, then M, i+1 |= □ψ.
Hence M, j + 1 |= ψ for all j ⩾ i. This fact implies M, j |= ⃝ψ for all j ⩾ i. We
obtain M, i |= □⃝ψ.

If M, i |= □⃝ψ, then M, j |= ⃝ψ for all j ⩾ i. Hence M, j + 1 |= ψ for all j ⩾ i.
This fact implies M, i+ 1 |= □ψ. It follows that M, i |= ⃝□ψ.

The remaining cases are considered similarly, using the semantics of propositional
connectives and ‘⃝’.

Corollary 1. If ϕ ≡ ψ, then |= ϕ iff |= ψ.
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4 R. Alonderis

Using Proposition 2, we push each ‘⃝’ inward in formulas so that it binds only
propositional symbols and other ‘⃝’. For example, the formula

□⃝
(
q ⊃ ⃝¬(p ∧ q1)

)
is transformed into the formula □

(
⃝q ⊃ ¬(⃝⃝p ∧ ⃝⃝q1). Such formulas are called

correct. A sequent S is called correct, iff each member of S is correct or of the type
⃝□ϕ, where □ϕ is correct.

Proposition 3. If S is correct, then all sequents in any backward proof-search tree
V (S) are correct.

Proof. The proof follows from the obvious fact that if the conclusion of an arbitrary
GLT derivation rule is a correct sequent, then any premise of this rule is a correct
sequent too.

From now on, we consider only correct sequents. The generality is not lost, since
any formula ϕ can be transformed into a correct formula ψ such that ϕ ≡ ψ, using
Proposition 2. Hence ⊢ ϕ iff ⊢ ψ, based on Corollary 1 and the fact that GLT is
sound and complete, according to Theorems 4.4 and 5.4, respectively, in [1].

4 Sequent and backward proof-search simplification

The sequent τ(S) is obtained from S by substituting qi for ⃝npi, where n > 0, ⃝npi
is not a sub-formula of ⃝⃝npi in S, and all qi are different and do not occur in S.
The obtained sequent has no formulas of the type ⃝np, where n > 0. For example:

τ
(
⃝□(⃝⃝p ∧ ⃝⃝⃝p) ⇒ ⃝⃝p, p, q

)
= ⃝□(q1 ∧ q2) ⇒ q1, p, q.

A signed formula ϕσ is defined inductively as follows:

ϕσ =



pσ if ϕ = p,

ϕσ1θ
σϕσ2 if ϕ = ϕ1θϕ2,where θ ∈ {∧,∨},

ϕη1 ⊃σ ϕσ2 if ϕ = ϕ1 ⊃ ϕ2,

¬σψη if ϕ = ¬ψ,
θσψσ if ϕ = θψ, where θ ∈ {⃝,□},

where η, σ ∈ {l, r} and η ̸= σ (“l” stands for left side of the sequent (antecedent) and
“r” stands for the right side of the sequent (succedent)). If Γ = (ϕ1, . . . , ϕm), then
Γσ = (ϕσ1 , . . . , ϕ

σ
m). If S = (Π ⇒ ∆), then

Ssg = Π l ⇒ ∆r.

Ssg is called a signed sequent. A sequent S is called □l-free, if Ssg does not contain
□l. The maximal class of □l-free sequents is denoted by C(\□l).

Lemma 1. If S ∈ C(\□l), then any path in V (S) that goes via the conclusion and
left premise of (⇒ □) is not a derivation loop.
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Proof. If
|Γ ⇒ ϕ,∆| |Γ ⇒ ⃝□ϕ,∆|

Γ ⇒ □ϕ,∆
(⇒ □)

is in V (S), then any sequent in any upward path π1 starting with the left premise
contains at least one occurrence of □ϕ less than any sequent in any upward path π2
ending by the conclusion. Hence no sequent in π1 can subsume any sequent in π2.

Lemma 2. If S ∈ C(\□l), then any derivation loop in V (S) consists of sequents of
the type ⇒ ⃝□∆,□Λ and is strong.

Proof. Let us consider any path π in V (S). Assume that π starts with a sequent of
the type ⇒ ⃝□∆,□Λ. If π is a derivation loop, then there is no left premise of (⇒ □)
in π, according to Lemma 1. Hence π consists of sequents of type ⇒ ⃝□∆′,□Λ′ and
is strong. If the path π starts with a sequent which is not of the type ⇒ ⃝□∆,□Λ,
then it cannot subsume any sequent above (⃝) in π. Hence π is not a derivation loop,
based on Proposition 1.

Lemma 3. If S ∈ C(\□l), then any connected component in any V (S) consists of one
derivation loop.

Proof. The proof follows from Lemmas 1 and 2.

Corollary 2. If S ∈ C(\□l), then there is no β-void derivation loop in any V (S).

Theorem 1. If S ∈ C(\□l), then ⊢ S iff ⊢ τ(S).

Proof. The Theorem is proved by induction on the derivation height h. If h = 0, then
both S and τ(S) are axioms. Let h > 0. If S is not of type (⇒ ⃝□∆,□Λ), then neither
S nor τ(S) can be in a derivation loop, according to Lemma 2. The theorem is proved
traditionally by the inductive hypothesis in this case. Let S : (⇒ ⃝□ϕ,□∆,□Λ) be
the base sequent of a derivation loop [S − S1] and the derivation of S start at the
bottom by

| ⇒ ϕ,□∆,⃝□Λ | | ⇒ ⃝□ϕ,□∆,⃝□Λ |
S : ⇒ □ϕ,□∆,⃝□Λ

(⇒ □).

We have S = S1, by Lemma 2. Lemma 1 implies that any sequent SL that is the left
premise of any application of (⇒ □) the conclusion of which is in [S − S1] cannot be
in [S − S1]. Based on this fact, we apply the inductive hypothesis to each such SL in
the considered derivation tree. S = S1 implies τ(S) = τ(S1). Hence [τ(S)− τ(S1)] is
a derivation loop. We get ⊢ τ(S). The direction from ⊢ τ(S) to ⊢ S is considered in
the same way.

Let S : (⇒ ⃝□Λ) be the base sequent of a derivation loop [S − S1] and the
derivation of S start at the bottom by

| ⇒ □Λ |
S : ⇒ ⃝□Λ

(⃝)

Only (⇒ □) can be backward applied to the premise and we consider this case in the
same way as the previous one.
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6 R. Alonderis

Example 1. If S ∈ C(\□l), then ⊢ S iff ⊢ τ(S), according to Theorem1. Hence we can
use τ(S) so that to check if S is derivable. The reduction of S to τ(S) may substan-
tially reduce backward proof-search because the number of ‘⃝’ in τ(S) is diminished
in comparison with S. For example, let S = (p,⃝p,⃝⃝p ⇒ □p). The backward
proof-search of S is as follows:

p,⃝p,⃝⃝p⇒ p

p,⃝p⇒ p

p⇒ p

S1 : ⇒ p ⇒ ⃝□p
(⇒ □)⇒ □p

(⃝)p⇒ ⃝□p
(⇒ □)p⇒ □p

(⃝)p,⃝p⇒ ⃝□p
(⇒ □)p,⃝p⇒ □p

(⃝)p,⃝p,⃝⃝p⇒ ⃝□p
(⇒ □)p,⃝p,⃝⃝p⇒ □p

We get ̸⊢ S because no rule is backward applicable to S1. Using τ(S) = (p, q, q1 ⇒ □p)
instead of S, the same result is achieved as follows:

p, q, q1 ⇒ p

S1 : ⇒ p ⇒ ⃝□p
(⇒ □)⇒ □p

(⃝)p, q, q1 ⇒ ⃝□p
(⇒ □)p, q, q1 ⇒ □p

We obtain ̸⊢ τ(S) because no rule is backward applicable to S1. Hence ̸⊢ S, according
to Theorem 1. We have 3 rule applications in the backward proof-search of τ(S)
versus 8 rule applications in the backward proof-search of S.

Example 2. Let S be any non-axiom sequent of the type Ξ ⇒ Ξ1, where each formula
in Ξ and Ξ1 is of the type ⃝np (n ⩾ 0). It follows from Theorem 1 that S is not
derivable because τ(S) is an atomic non-axiom sequent, i.e., no further backward
proof-search is needed.

Sequents of the type Ξ,□Γ ⇒ □∆,Ξ1, where only propositional symbols and ‘⃝’
occur in (Ξ,Ξ1), are called canonical. Let ⃝np (n ⩾ 0) be a member of a canonical
sequent Ξ,□Γ ⇒ □∆,Ξ1. The formula ⃝np is called redundant in the sequent if p
does not occur in (Γ,∆).

A backward proof-search tree V is called a one-step reduction tree, iff 1) there is
at most one application of (⃝) on each branch and 2) each non-atomic and non-axiom
leaf of V is a premise of (⃝). It is easy to see that every leaf of any one-step reduction
tree is an axiom or a canonical sequent. We have that proof-search of an arbitrary
sequent can be reduced to proof-search of canonical sequents.

Theorem 2. If S′ is obtained from a non-axiom canonical sequent S by dropping
redundant formulas, then ⊢ S iff ⊢ S′.

Proof. If ⊢ S′, then ⊢ S, using the rule of weakening and Theorem 6.5 in [1]. Let ⊢ S.
It follows that |= S because GLT is sound, Theorem 4.4 in [1]. It is easy to see that
this fact implies |= S′. Hence ⊢ S′ because GLT is complete, Theorem 5.4 in [1].
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Dropping redundant members allows us to simplify sequents and reduce backward
proof-search in some cases. Let us consider, e. g., the sequent S = (□p ⇒ ⃝⃝q).
The formula ⃝⃝q is redundant in S. We drop it and obtain □p ⇒. This sequent is
equivalent to S by Theorem 2.

5 Concluding remarks

In the present paper, correct sequents have been defined and it has been shown that
any sequent S is equivalent to some correct sequent. The sequent τ(S) for any correct
sequent S and the class of sequents C(\□l) have been defined. We have proved
that if S belongs to this class, then it is derivable if and only if τ(S) is derivable,
Theorem 1. That enables to check derivability of S by means of a simpler sequent
τ(S), which substantially reduces backward proof-search in cases when S has many
occurrences of ‘⃝’. Also, redundant formulas have been defined and it has been
proved that dropping redundant formulas from a canonical sequent has no impact on
its derivability, Theorem 2. The optimizations of backward proof-search presented in
the present paper concern only partial cases. The general case could be a topic for
further investigation.
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REZIUMĖ

Efektyvesnė laiko logikos sekvencijų įrodymo paieška

R. Alonderis
Šiame straipsnyje pateikiamas dalinis metodas leidžiantis gauti efektyvesnę sekvencijų įrodymo paiešką
propozicinei tiesinio laiko logikai, naudojant ciklinį sekvencinį skaičiavimą. Šis metodas yra pagrįstas
sintaksine sekvencijų transformacija į joms ekvivalenčias paprastesnes sekvencijas. Straipsnyje taip
pat parodoma, kad kai kurios formulės gali būti pašalintos iš sekvencijų niekaip nepaveikiant jų
įrodomumo.
Raktiniai žodžiai : laiko logika; atgalinė įrodymo paieška; cikliniai sekvenciniai skaičiavimai
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