On the uniform distribution of endomorphisms of s dimensional torus, II

Birutė KRYŽIENĖ (VGTU), Gintautas MISEVIČIUS (VU)
e-mail: gintas.misevicius@maf.vu.lt

Let $\Omega=\Omega_{s}(s \geqslant 2)$ be s-dimensional torus, i.e., the set of points

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right), \quad 0 \leqslant x_{i}<1, i=1, \ldots, s .
$$

An endomorphism of torus $T: \Omega \rightarrow \Omega$ is defined by

$$
T \mathbf{x}=\mathbf{x} W(\bmod 1), \quad \mathbf{x} \in \Omega
$$

where W is a nonsingular matrix with integer elements.
We continue our work [1] on the investigation of the conditions on the initial point \mathbf{x} and the matrix W for the sequence $\mathbf{x} W, \mathbf{x} W^{2}, \ldots, \mathbf{x} W^{k}, \ldots$ be uniformly distributed on torus Ω. Therefore all the notations are the same as in [1]. Here we remind some of them:

$$
\begin{equation*}
\boldsymbol{\xi}=\boldsymbol{\xi}(t)=\left(\varphi_{1}(t), \ldots, \varphi_{s}(t)\right), \quad a \leqslant t \leqslant b \tag{1}
\end{equation*}
$$

is a parametric curve on Ω_{s}, functions $\varphi_{i}(t)$ have bounded derivatives of order $s-1$, $W(t)$ is the Wronskian of these functions, $W(t) \neq 0$ for $t \in[a, b]$, the characteristic polynomial of the matrix W satisfies certain conditions on its roots.
D. Moskvin [2] proved that the sequence

$$
\begin{equation*}
\boldsymbol{\xi} W, \boldsymbol{\xi} W^{2}, \ldots, \boldsymbol{\xi} W^{k}, \ldots \tag{2}
\end{equation*}
$$

is uniformly distributed on torus Ω_{s} for almost all $t \in[a, b]$ in the sense of the Lebesgue measure μ.

In [1] the condition

$$
\begin{equation*}
\left|\varphi_{i}^{\prime \prime}(t)\right| \geqslant \kappa>0, \quad i=1, \ldots, s \tag{3}
\end{equation*}
$$

was used instead of $|W(t)| \neq 0$, and a restricted condition was imposed on the roots $\theta_{1}, \ldots, \theta_{s}$ of the characteristic polynomial of the matrix W.

In this paper the condition (3) is replaced by another one.
The following theorem is proved.
THEOREM. Let W be nonsingular matrix with integer elements, $\theta_{1}, \theta_{2}, \ldots, \theta_{s}$ be its eigenvalues, $\left|\theta_{1}\right|>\left|\theta_{2}\right|>\cdots>\left|\theta_{s}\right|, \mathbf{w}_{i}=\left(w_{i 1}, \ldots, w_{i s}\right)$ be the corresponding eigen-
vectors, and $g(t)=\mathbf{w}_{1} \boldsymbol{\xi}(t)$,

$$
\kappa^{2}=\left(\varphi_{1}^{\prime \prime}(t)\right)^{2}+\cdots+\left(\varphi_{s}^{\prime \prime}(t)\right)^{2}>0, \quad t \in[a, b]
$$

If for each $t_{0} \in[a, b]$ such that $g\left(t_{0}\right)=0$, there exists $k, 1<k \leqslant s, g^{(k)}\left(t_{0}\right) \neq 0$, then the sequence (2) is uniformly distributed on Ω_{s} for almost all $t \in[a, b]$ in the sense of the Lebesgue measure.

Consider the linear combination

$$
g(t)=w_{11} \varphi_{1}(t)+w_{12} \varphi_{2}(t)+\cdots+w_{1 s} \varphi_{s}(t)
$$

The following auxilary result for this function is true.
LEMMA. If $g\left(t_{0}\right)=0, t_{0} \in[a, b]$, and $g^{(k)}\left(t_{0}\right) \neq 0$ for some $k, 1<k \leqslant s$, then there exist two sufficiently small constants λ, λ^{*} such that

$$
|g(t)| \geqslant \lambda\left|t-t_{0}\right|^{s-1} \quad \text { for }\left|t-t_{0}\right| \leqslant \lambda^{*}
$$

Proof of Lemma. According to the Taylor formula in the neighbourhood of $t=t_{0}$,

$$
\begin{equation*}
g(t)=\sum_{k=1}^{s-1} \frac{g^{(k)}\left(t_{0}\right)}{k!}\left(t-t_{0}\right)^{k}+\frac{g^{(s)}\left(t^{*}\right)}{s!}\left(t-t_{0}\right)^{s}, \quad t^{*} \in[a, b] \tag{4}
\end{equation*}
$$

Let $g^{\prime}\left(t_{0}\right) \neq 0$. Then

$$
g(t)=\left(t-t_{0}\right)\left(g^{\prime}\left(t_{0}\right)+\left(t-t_{0}\right) B_{1}(t)\right)
$$

with a function $B_{1}(t)$ bounded for $t \in[a, b], \max _{t}\left|B_{1}(t)\right|=B_{1}$. Therefore the inequality

$$
|g(t)| \geqslant \frac{\left|g^{\prime}\left(t_{0}\right)\right|}{2 B_{1}}\left|t-t_{0}\right|
$$

is true in the interval $\left|t-t_{0}\right| \leqslant \frac{\left|g^{\prime}\left(t_{0}\right)\right|}{2 B_{1}}$, and the statement of Lemma is true.
Now let $g^{\prime}\left(t_{0}\right)=0$, but $g^{\prime \prime}\left(t_{0}\right) \neq 0$. In the same manner we obtain from (4) that

$$
g(t)=\left(t-t_{0}\right)^{2}\left(g^{\prime \prime}\left(t_{0}\right)+\left(t-t_{0}\right) B_{2}(t)\right)
$$

with a function $B_{2}(t)$ bounded for $t \in[a, b], \max _{t}\left|B_{2}(t)\right|=B_{2}$, and the inequality

$$
|g(t)| \geqslant \frac{\left|g^{\prime \prime}\left(t_{0}\right)\right|}{2 B_{2}}\left|t-t_{0}\right|^{2}
$$

is true in the interval $\left|t-t_{0}\right| \leqslant \frac{\left|g^{\prime \prime}\left(t_{0}\right)\right|}{2 B_{2}}$.
After a final number of similar steps, since $g^{(k)}\left(t_{0}\right) \neq 0$ for some k, we get the proof of Lemma.

So, every zero of the function $g(t)$ is isolated and the number of zeroes is finite.

Proof of Theorem. The eigenvectors $\mathbf{w}_{i}, i=1, \ldots, s$, corresponding to different eigenvalues form the complete basis in the space \mathbf{R}_{s}. So, any vector can be written as follows:

$$
\begin{equation*}
\boldsymbol{\xi} W^{m}=\sum_{i=1}^{s}\left(\sum_{j=1}^{s} w_{i j} \varphi_{j}(t)\right) \theta_{i}^{m} \mathbf{w}_{i}=\sum_{i=1}^{s} L_{i}(t) \theta_{i}^{m} \mathbf{w}_{i} . \tag{5}
\end{equation*}
$$

The function $L_{1}(t)$ as well as $L_{1}^{\prime}(t)$ have finite number of isolated zeroes. Let these zeroes be $t_{i}, i=1,2, \ldots, r$. According to Lemma

$$
\left|L_{1}(t)\right| \geqslant \lambda_{i}\left|t-t_{i}\right|^{s-1}, \quad i=1, \ldots, r
$$

For a sufficiently small $\delta, \delta>0$, we take nonintersecting intervals of length 2δ :

$$
\Delta_{i}=\left(t_{i}-\delta, t_{i}+\delta\right), \quad i=1, \ldots, r
$$

For every $t, t \notin \bigcup \Delta_{i}$, i.e., $t \in[a, b] \backslash\left(\bigcup \Delta_{i}\right)=A$, analogously to [2] the inequality

$$
\begin{equation*}
\left|L_{1}(t)\right| \geqslant d \delta^{s-1}, \quad d=\min _{i} \lambda_{i} \tag{6}
\end{equation*}
$$

can be proved.
The set A is a union of intervals, and let $\left[a_{1}, b_{1}\right]$ be one of them. Consider the integral

$$
I_{m}=\int_{a_{1}}^{b_{1}} g\left(\xi(t) W^{m}\right) \mathrm{d} t, \quad g(\mathbf{x}) \in E_{s}^{\alpha}(c)
$$

where $E_{s}^{\alpha}(c)$ is the Korobov class of functions [3]. We obtain from (5) and (6) that

$$
\begin{align*}
\boldsymbol{\xi} W^{m}= & L_{1}(t) \theta_{1}^{m} \mathbf{w}_{1}+L_{2}(t) \theta_{2}^{m} \mathbf{w}_{2}+\cdots \\
= & \left(L_{1}(t) \theta_{1}^{m} w_{11}+L_{2}(t) \theta_{2}^{m} w_{21}+\cdots,\right. \\
& \left.L_{1}(t) \theta_{1}^{m} w_{12}+L_{2}(t) \theta_{2}^{m} w_{22}+\cdots, \ldots\right) \\
= & \left(L_{1}(t) w_{11}\left(\theta_{1}^{m}+\mathrm{O}\left(\delta^{-s} \theta_{2}^{m}\right)\right), L_{1}(t) w_{12}\left(\theta_{1}^{m}+\mathrm{O}\left(\delta^{-s} \theta_{2}^{m}\right)\right), \ldots\right) \\
= & \left(w_{11} L_{1}(t), w_{12} L_{2}(t), \ldots\right)\left(\theta_{1}^{m}+\mathrm{O}\left(\delta^{-s} \theta_{2}^{m}\right)\right) \tag{7}
\end{align*}
$$

Let $t=t_{0}$ be such that $L_{1}^{\prime}\left(t_{0}\right)=0$. Then the integral I_{m} can be divided into three parts and each of them is evaluated separately:

$$
I_{m}=\left(\int_{a_{1}}^{t_{0}-\delta}+\int_{t_{0}-\delta}^{t_{0}+\delta}+\int_{t_{0}+\delta}^{b_{1}}\right) g\left(\xi(t) W^{m}\right) \mathrm{d} t=I_{m 1}+I_{m 2}+I_{m 3}
$$

It is evident that the middle term $I_{m 2}=\mathrm{O}(\delta)$. Both $I_{m 1}$ and $I_{m 3}$ have the same estimation. Let us take $I_{m 1}$:

$$
I_{m 1}=\int_{a_{2}}^{b_{2}} g\left(\boldsymbol{\xi}(t) W^{m}\right) \mathrm{d} t, \quad \text { where } a_{2}=a_{1}, b_{2}=t_{0}-\delta
$$

According to (7) we can write:

$$
I_{m 1}=\int_{a_{2}}^{b_{2}} g\left(w_{11} \theta_{1}^{m} L_{1}(t)\left(1+\mathrm{O}\left(\delta^{-s} \varrho\right)\right), \ldots\right) \mathrm{d} t, \quad \text { where } \varrho=\left|\frac{\theta_{2}}{\theta_{1}}\right|^{m}
$$

After the change of variables $u=\theta_{1}^{m} L_{1}(t)$ we obtain

$$
I_{m 1}=\frac{1}{\theta_{1}^{m}} \int_{D_{m}}^{D_{m}^{\prime}} g\left(w_{11} u\left(1+\mathrm{O}\left(\varrho \delta^{-s}\right)\right), \ldots\right) \Phi(u) \mathrm{d} u
$$

with $D_{m}=\theta_{1}^{m} L_{1}\left(a_{2}\right), D_{m}^{\prime}=\theta_{1}^{m} L_{1}\left(b_{2}\right), \Phi(u)=\frac{d}{d u} L_{1}^{-1}\left(\frac{u}{\theta_{1}^{m}}\right)$.
Suppose D_{m} and D_{m}^{\prime} are integers. Otherwise the estimation of $I_{m 1}$ differs only in $\mathrm{O}\left(\theta_{1}^{m} \delta^{s-1}\right)$. Thus by the Abel transformation and analogously to [4] we get

$$
\begin{aligned}
I_{m 1} & =\frac{1}{\theta_{1}^{m}} \sum_{k=D_{m}}^{D_{m}^{\prime}-1} \int_{k}^{k+1} g(\ldots) \Phi(u) \mathrm{d} u=\frac{1}{\theta_{1}^{m}} \sum_{k=D_{m}}^{D_{m}^{\prime}-1} \int_{0}^{1} g(\ldots) \Phi(u+k) \mathrm{d} u \\
& =\frac{1}{\theta_{1}^{m}} \int_{0}^{1} \sum_{k=D_{m}}^{D_{m}^{\prime}-1}(\Phi(u+k)-\Phi(u+k+1)) \sum_{l=D_{m}}^{k} g(\ldots) \mathrm{d} u \\
& =\frac{1}{\theta_{1}^{m}} \int_{0}^{1} \sum_{k=D_{m}}^{D_{m}^{\prime}-1}(\Phi(u+k)-\Phi(u+k+1))\left(k-D_{m}+1\right) \\
& \times\left\{\int_{\Omega_{s}} g(\mathbf{x}) \mathrm{d} \mathbf{x}+\mathrm{O}\left(\frac{1}{k-D_{m}+1}+\left(k-D_{m}+1\right)\left(\varrho \delta^{-s}\right)^{\frac{\alpha-1}{1+\varepsilon}}\right)\right\}
\end{aligned}
$$

with

$$
\alpha=1+\frac{2(1+\varepsilon) \ln \left|\theta_{1}\right|}{\ln \left|\theta_{1}\right|-\ln \left|\theta_{2}\right|}, \quad \varepsilon>0
$$

From (6) we get the estimate

$$
|\Phi(u+k)-\Phi(u+k+1)|=\mathrm{O}\left(\theta_{1}^{-m} \delta^{-3 s}\right)
$$

and then we have the equality

$$
I_{m 1}=\left(b_{2}-a_{2}\right) \int_{\Omega_{s}} g(\mathbf{x}) \mathrm{d} \mathbf{x}+\mathrm{O}\left(\delta+\frac{1}{\theta_{1}^{m} \delta^{3 s}}+\frac{\theta_{1}^{m}}{\delta^{3 s}}\left(\left|\frac{\theta_{2}^{m}}{\theta_{1}^{m}}\right| \frac{1}{\delta}\right)^{\frac{\alpha-1}{1+\varepsilon}}\right)
$$

The remaining part of the proof of Theorem is the same as in [4] (see also [1]).

References

1. B. Kryžienė, G. Misevičius, On the uniform distribution of endomorphisms of s-dimensional torus, Fizikos ir matematikos fakulteto seminaro darbai. Šiauliu universitetas, 6, 56-63 (2003).
2. D.A. Moskvin, On the metric theory of automorphisms of the two-dimensional torus, Math. USSR Izv. 18, 61-88 (1982).
3. N.M. Korobov, Trigonometric Series and Their Applications, Nauka, Moscow (1989) (in Russian).
4. D.A. Moskvin, On trajectories of ergodic endomorphisms of two-dimensional torus, starting on a smooth curve, in: Actual Problems of Analytic Number Theory, ed. V.G. Sprindzhuk, Nauka i Technika, Minsk, 1974, pp. 138-167 (in Russian).

REZIUME

B. Kryžienė, G. Misevičius. s-mačio toro endomorfizmu tolygus pasiskirstymas, II

Darbe apibendrinama D. Moskvino teorema apie s-mačio toro Ω_{s} endomorfizmų (mod 1) tolygu pasiskistymą. Vietoje apribojimo - funkciju $\varphi_{1}(t), \ldots, \varphi_{s}(t)$ vronskijanas $W(t) \neq 0, t \in[a, b]$, naudojama kita salyga $\left(\varphi_{1}^{\prime \prime}(t)\right)^{2}+\ldots+\left(\varphi_{s}^{\prime \prime}(t)\right)^{2}>0, t \in[a, b]$.

