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1. Introduction

Probabilistic dynamics and dynamic reliability

A number of different methodologies were proposed in order to deal with the time
that elapses during the evolution of dynamics. Most known theoretical background of
these methodologies to treat and analyse dynamic systems was based on Markovian
framework. For instance, the Theory of Probabilistic Dynamics (TPD) [1] was exten-
sively investigated in order to perform analytical modelling related to the analysis of
systems reliability and safety. Dynamic reliability techniques [2] have been developed
in order to study the reliability parameters of complex dynamic systems having con-
tinuous processes and discrete failure events. In dynamic reliability theory, the concept
of reliability includes the interaction existing between the sequence of dynamics and
events, such as the crossing of the border of a safety domain in the space of the physical
variables, as well as the transitions between dynamics.

Recently the Theory of Stimulated Dynamics (TSD) is developed for analytical
modelling of hybrid (continuous-discrete) systems. The theory at first deals with in-
stantaneous and random variations of process variables; then, it introduces the concept
of stimulus and how it can be implemented. A non-Markovian treatment is provided
in order to adapt TPD for practical applications, mostly in the context of Probabilistic
Safety Assessment (PSA) [3]. The development of Stimulus Driven Theory of Prob-
abilistic Dynamics (SDTPD) or Theory of Stimulated Dynamics (TSD) as well as
related methods and simulation methodologies has been agreed as a basis for research
continuation in the perspective of it applications for PSA and severe accident manage-
ment.

Issues of simulation and aggregate approach

The analytical modelling and simulation methods are used separately as a rule in or-
der to analyse the physical processes and random events. However, in the currently
used classical PSA, the lack of treatment of dynamic interactions between the physi-
cal processes and random events causes the issues to model and latter on to simulate
imprecise time delays in the actuation of control/protection signals, distributed param-
eters in the dynamics, uncertain limits of safety domain in the process variable space
and etc. Thus, for more complex analysis there is obvious need to integrate different
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modelling approaches and apply the combined modelling (analytical modelling and
simulation), which enables to join both methods advantages and avoids many of their
disadvantages.

In general, there are a lot of mathematical modelling schemes, which can be used
separately or integrated in order to extend possibilities of modelling and analysis. The
aggregate approach and the method of control sequences have been investigated and
widely used at Kaunas University of Technology (KTU). Using this approach the sim-
ulation of dynamic systems [4] and integration of modelling methods [5], [6] was also
considered. According to this approach the investigated objects are presented as the
set of interacting Piecewise Linear Aggregates (PLAs) [7]. The method of control se-
quences is used for the aggregate specification. Initially, PLA formalism was mainly
used for discrete event system specification and analysis of distributed systems [8]. In
our case, applying the advantages of PLA, the focus is set on simulation and analysis
of hybrid systems considering the stimulated dynamics and interactions with various
events.

2. Stimulated dynamics

At first, let us determine analytically the basic ingredients of stimulated dynamics
and consider them in relation to each other. Events are associated to an instanta-
neous change of the dynamics due to stimulus. System dynamics is determined by
the law of process variables evolution, which can be indexed by an integer i ∈ N . Pro-
cess variables x̄ can be governed by a set of deterministic equations, e.g., dx̄/dt =
fi(x̄), x̄(0) = x̄0, x̄ ∈ RN . Event e is defined as transition of dynamics, in particular
case from dynamics i to dynamics j at time t , i.e., e: C → C. Random event is the
event whose occurrence is related to complex nature, which is modelled stochastically.
An example of random event is a time distributed failure occurrence. Deterministic
event is induced by the deterministic rules. An example of such an event can be related
to time moment when a threshold pressure or temperature is reached and safety func-
tions is activated. Paths of dynamics or evolution of process variables between transi-
tions are associated to deterministic transients. Paths depend on initial and boundary
conditions, which are associated to the initial states of process variables. Transitions
are associated to significant changes in dynamic status, i.e., the end of one dynamics
and the beginning of next one. Sequence of transitions is related to the sequence of
events, part of which can be introduced artificially just for simulation purposes. To de-
scribe transition (in particular case due to event e) from dynamics i to dynamics j at
time t , let us define the transition rate between dynamics j → i as p(j → i|x̄), which
characterizes the part of the sequence of transitions (or the sequence of events if all
transitions are related to events) corresponding to the transition between two dynam-
ics j → i. Then the total transition rate out of dynamics j is equal to the sum of all
transition rates out of dynamics j to any i �= j :

λj (x̄) =
∑

i �=j

p(j → i|x̄).
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All the information on the any dynamics i is accumulated into the probability den-
sity function π(x̄, i, t) of the dynamics i at time t and with process variables in dx̄

about x̄.
Before description of sequence of events, two transition densities related to any

dynamics i can be also introduced:
1. Outgoing density out of dynamics i to any k �= i at (x̄, t)

ψ(x̄, i, t) ≡
∑

k �=i

p(i → k|x̄)π(x̄, i, t) = λi(x̄)π(x̄, i, t).

2. Ingoing density into dynamics i from any j �= i at (x̄, t)

ϕ(x̄, i, t) ≡
∑

j �=i

p(j → i|x̄)π(x̄, j, t) =
∑

j �=i

p̂(j → i|x̄)ψ(x̄, j, t).

To describe event in relation to stimulus, there is need to note that stimulus covers
any situation that potentially causes, after a given time delay, an event to occur (see
Fig. 1). In the usual formulations of the theory of probabilistic dynamics the change
in the dynamic behaviour of the physical process variables occurs with no delay after
the solicitation causing a branching in the continuous event tree. The main concept in-
troduced in stimulus driven theory of probabilistic dynamics is that of stimulus, which
must take place prior to the actual transition between two dynamics, i.e., system con-
figurations corresponding to different dynamic evolutions.

Let � be the set of all stimuli to be accounted for in the process evolution following
the occurrence of a given event related to the transitions between dynamics. Denote
by f F

i (τF ; ū) the probability density function of activating particular stimulus F ∈ �

at states ḡi (τF , ū) after time τF spent in dynamics i which was entered at state ū.
Also define hF

ik(td; ū) – probability per unit time of having a time delay tdk = tF −
τF between stimulus F activation at time moment τF and occurrence of event, i.e.,
transition of dynamics i → k, if stimulus F was activated at states ū. hF

i (td; ū) =∑
k �=i h

F
ik(tdk; ū) is probability density function of the delay td between stimulus F

activation at time moment τF and in the same conditions leaving dynamics i at time
moment tF .

Sequence of events consists of events, with system dynamics in between. Every se-
quence of events should be unique, but can lead to the same consequence. Sequence of
event is an instance of the system status evolution through time line, i.e., E = e × T .
Space of sequences of events is the set of all possible event sequences, i.e., SE = {Ei}.

Fig. 1. Stimulus F activation and delay before event occurrence.
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Event sequences in an event sequence space are considered to be mutually exclusive,
even though they may partially overlap, since they are assumed to be related to dynam-
ics, which originate from a single initiating state of the process variables and change
at each branching point. Branching point represents a time moment when dynamics
changes due to possible occurrence of event. At each branching time moment the dy-
namics may have one or more branches, which correspond to the following dynamics,
depending on previous dynamics and possible occurrence of different events. Scenario
si is a simplified representation of sequences with some common features. These fea-
tures as example may concern the classification of events or/and separation according
to timing of events. The sequences belonging to a same scenario are therefore consid-
ered to be similar, to the extent that they share the features implied by the scenario.
Rare scenario from definition point of view is related to the rareness of sequences.

The practical simulation of sequences asks for the introduction of some kind of
simulation approach. In the case of stimulus driven dynamics, the proposed approach
considering discrete time moments restricts the amount of possible branching causes
and branching points in time. After the occurrence of an initiating event, the related
evolution laws of the process variables are considered. The corresponding determin-
istic process evolution defines a branch, from which all stimuli with related events
causing the system to branch off are accounted for at those user-specified discrete time
intervals. The same branching process is carried on until considered process variables
reach final absorbing end states (consequence expressed as a damage state or as a
steady safe situation). The frequency of all sequences of dynamics can be calculated
as they develop in the simulation.

3. Aggregate based simulation

If the aggregate mathematical modelling scheme (A-scheme) is applied for system
specification and simulation, then the system is presented as a set of interacting piece-
linear aggregates. In general macro modelling stage aggregates purposes and relation-
ships are described. Later on, in micro modelling stage the functioning of each aggre-
gate is specified. Each PLA is taken as an object defined by a set of states Z, input
variable Xd ∈ X and output variable Yd ∈ Y . These variables with external events
e′ and internal events e′′ and control sequences ξ are considered to be time func-
tions. Each aggregate is functioning in a set of time moments t ∈ T . Apart from these
sets, transition H and output G operators must be defined as well. The state z ∈ Z of
piece-linear aggregate can be related to the state of a piece-linear Markov process, i.e.:
z(t) = (v, zv(t)), where v is a discrete state component taking values on a countable
set of values; and zv(t) is a continues component can be related to discrete component
v and comprising time dependant values.

If system functioning can be expressed algorithmically, then the usual A-scheme
is suitable to be used for simulation. However, if functioning of even one part of sys-
tem, or its control condition as well as characteristic is described with differential
equations or derivatives of functions, then usual A-scheme should be extended and
special dynamic aggregate could be used in order to get values of process variables
x̄ in every analyzed time moment. The proposed dynamic aggregate is related to the
dynamic mathematical modelling scheme (D-scheme). The application of D-scheme
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is based on analytical specification using differential equations and their systems. For
practical simulation using this scheme there is developed a tool [6], which could solve
general nth order differential equations and general systems of first-order differential
equations. The solution of equations is expresses as function using Taylor row.

The simulation of stimulated dynamics is proposed to be realized using the dynamic
aggregate and introducing other special aggregates for integration of D-scheme in to
A-scheme. The integration of different modelling schemes is related to specification of
interaction between events related to stimuli and process considered in hybrid system.
Specifically, the simulation of continuous process variables x̄ can be realized using the
dynamic aggregate named Process. The control of transitions and various scenarios
related to random events simulation can be realized with special observing/informing
and managing aggregates: Observer and Manager (see Fig. 2).

A conceptual model and description of each aggregate (e.g., Manager, Observer
and Process) can be presented in terms of A-scheme according to this approach. The
simulation of each part of model can be formally described according to the steps of
formal aggregate specification. Below there is an example of aggregate specification,
which presents the formal description of aggregate Process in accordance to the nota-
tion presented in above and can be used in TPD.

Aggregate: Process
1. Input variables set: X = {X1,X2}; X1 = (x̄0, i), X2 = t ;
2. Output variables set: Y = {Y1}; Y1 = x̄, where x̄ = ḡi (t, x̄0);
3. External events set: E′ = {e′

1, e
′
2}; Xd → e′

n, d ∈ {1,2} and n = d ;
4. Internal events set: E′′ = ∅;
5. Aggregate states set: Z = {zi(t)} = {(vi, zv(t))},

Discrete component: vi = (x̄, i),
Continuous component: zv(t) = ḡi(t, x̄0);

6. Control sequences: {ξi} = ∅;
7. Initial state: z0(t0) = (v0, zv(t0)), v0 = (x̄0,0), zv(t0) = ḡi(0, x̄0);
8. Operators: transition H(ei)& output G(ei)

H(e′
1): Z = {(vi, zv(t))}, vi = (x̄0, i), zv(t) = x̄0; G(e′

1): Y = ∅;
H(e′

2): Z = {(vi, zv(t))}, vi = (x̄, i), zv(t) = x̄; G(e′
2): Y = {Y1}, Y1 = x̄.

The internal events set E′′can be used in the Process aggregate in order to introduce
all stimuli without additional aggregates. However in this case the stimulus will be

Fig. 2. Aggregates for events and process interaction.
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only in a semi-Markovian framework. In order to employ the stimulus-driven Non-
Markovian framework [3], i.e., to keep and evolve according information in history,
two aggregates, namely Manager and Observer, can be introduced for each stimulus.

The abilities of adaptive managing of the process and changing of its functioning
can be developed. This can be done using conditional control sequences ξ and inter-
acting PLAs. For example, it is possible the modelling of process, which at first is
based on one law, and in case, it reaches the defined state – on another law. Variables
of continuous process with changeable laws can be defined using differential equation
and their systems.

As for simple example let us consider the process with two parts, i.e., two different
dynamics. In the both parts, where respectively t ∈ (T0, T1) and t ∈ (T1, T2) process is
described by two differential equations, which depends on the time t and changeable
parameter K . The parameter K represents the intensity of process and itself can be
dependable on process initial parameter L (e.g., K = 3 · √L). The first part of process
is based on the equation dy/dt = K · t , which common solution is y = K/2 · t2 + C.
Let us assume C = 0, i.e., it is valid condition y = 0, when start time moment t = 0.
The stimulus FX and transition between dynamics is related to the change of process
at the time moment TX = T1, when some limit state (for instance y = L/2) has been
reached. As example the law of the second part of process could be equation dy/dt =
K · (Tx − t), which common solution is y = K(Tx · t − t2/2) + C. If again C = 0 and
following dynamics start time moment t = 0, then process would continue starting at
the same state y(TX). Finally, we can assume that this dynamics will finish at time
moment T2, when the process state is close to the initial parameter, for instance L.
The similar process will be restarted, when the initial stimulus F0 will appear again.
In general, each time moment T ∈ {T0, T1, T2} and associated stimuli F ∈ � can be
related to the random delays. An example of computer simulation is presented in the
Fig. 3.

According to the each stimulus F aggregate Manager initiates an event to manage
the evolution of dynamics, i.e., to start, change or finish the process. The Observer
checks the dynamics and limits in order to get the time moment needed for stimulus F

generation. In this case, the time delay after stimulus F generation can be simulated

Fig. 3. An example of process simulation considering different time intervals.
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in aggregate Manager adding internal event with related control sequence. The control
sequence is used in order to define the actual time for the dynamics initiation.

Conclusions

The elements related to the stimulated dynamics are determined and aggregate based
simulation approach is applied in order to consider the probabilistic dynamics and
dynamic reliability. Approach based on integration of D-scheme in to A-scheme per-
mits to use the same formal specification for simulation of continuous part of hybrid
systems. The decomposition of simulation tasks enables to simulate the dynamic sys-
tem with random delays. It is possible to conclude that presented aproach provides
an elegant and conceptually simple solution of simulation problems related to hybrid
systems. The aggregate based approach is applicable for construction of general mod-
els describing probabilistic interactions between events and dynamics. This approach
clearly allows simulation of dynamics and systematic transitions considering stimuli
and delays.
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7. H. Pranevičius, The use of PLA for creation of simulation models, in: Proceedings of the 2004 Summer
Computer Simulation Conference (SCSC 2004), San Jose, California, USA (2004), pp. 179–184.
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REZIUMĖ

R. Alzbutas, V. Janilionis. Stimuliuojama dinamika ir jos modeliavimas

Darbe nagrinėjami tikimybinės dinamikos bei dinaminio patikimumo veiksniai susieti su stimuliuojamos

dinamikos apibrėžimu ir agregatinio modeliavimo metodo taikymu, analitinis ir imitacinis hibridini ↪u sis-

tem
↪

u formalizavimo ir modeliavimo būdai bei dinamini
↪

u sistem
↪

u modeliavimas atsižvelgiant
↪
i atsitiktines

laiko trukmes tarp stimul
↪

u atsiradimo ir dinamikos kitimo. Pateikta nauja metodika, skirta tolydži
↪

u proces
↪

u

ir nuo j
↪

u priklausanči
↪

u
↪
ivyki

↪
u s

↪
aveikos modeliavimui.


