Netolygūs įverčiai puasoninėje aproksimacijoje

Kazimieras PADVELSKIS (VGTU)
el. paštas: amkapa@vdu.lt

Tegul $X_{n1}, X_{n2}, \ldots, X_{nk_n}, k_n \to \infty$, kai $n \to \infty$, – nepriklausomų atsitiktinių dydiskų serijų seka. Atsitiktinio dydžio X_{nj}, $j = 1, 2, \ldots, k_n$, charakterinė funkcija

$$f_j(t) = f_{nj}(t) = Ee^{itX_{nj}},$$

jei $E|X_{nj}|^s < \infty$, taško $z = z(it) = e^{it} - 1$ aplinkoje, parašysime pavidalu

$$f_j(t) = 1 + \sum_{k=1}^{s} \frac{\alpha_{jk}}{k!} (e^{it} - 1)^k + o(|e^{it} - 1|^s), \quad (1)$$

Čia α_{jk} – atsitiktinio dydžio X_{nj} faktorialiniai momentai, t.y.

$$\alpha_{jk} = \left. \frac{d^k}{dz^k} E(1 + z)^{X_{nj}} \right|_{z=0} = EX_{nj}(X_{nj} - 1) \cdots (X_{nj} - k + 1),$$

o faktorialiniai kumuliantai

$$\gamma_{jk} = \left. \frac{d^k}{dz^k} \log E(1 + z)^{X_{nj}} \right|_{z=0}, \quad k = 1, 2, \ldots.$$

Šiame darbe nagrinėjami nepriklausomų atsitiktinių dydžių, įgyjančių sveikasias neneigiamas reikšmes, sumų $S_{nk_n} = X_{n1} + X_{n2} + \cdots + X_{nk_n}$ skirstinių aproksimacijos Puasono dėsniu ([1], [2], [3]) liekamojo nario netolygūs įverčiai. Puasono skirstinio su parametru λ pasiskirstymo funkciją žymėsime

$$\Pi(x; \lambda) = \sum_{l=0}^{[x]} \frac{\pi(l; \lambda)}{l!} e^{-\lambda}.$$

Be to, žymėsime

$$\pi_1(l; \lambda) = \pi(l; \lambda) - \pi(l - 1; \lambda), \quad \pi(l; \lambda) = 0, \quad l = -1, -2, \ldots$$

Visi rezultatai gauti, pritaikius lemą, kurią tik suformuluosime.

Lema. Žiurėk, atsitiktinių dydžių X ir Y, įgyjančių sveikasias reikšmes, pasiskirstymo funkcijos $F(x)$ ir $G(x)$, charakteristinės funkcijos $f(t)$ ir $g(t)$, o $\Delta(x) = F(x) - G(x)$
ir \(\delta(t) = f(t) - g(t) \), tai

\[
(1 + |x|)|\Delta(x)| \leq \frac{1}{8\pi} \left\{ 4 \int_{-\pi}^{\pi} \left| \frac{\delta(t)}{\sin \frac{t}{2}} \right| dt + 5 \int_{-\pi}^{\pi} \left| \frac{\delta(t)}{\sin \frac{t}{2}} \right| dt + \int_{-\pi}^{\pi} \left| \frac{\delta(t)}{\sin \frac{t}{2}} \right| dt \right\} \quad (2)
\]

ir

\[
(1 + |x|)^2|\Delta(x)| \leq \frac{1}{8\pi} \left\{ 8 \int_{-\pi}^{\pi} \left| \frac{\delta(t)}{\sin \frac{t}{2}} \right| dt + 5 \int_{-\pi}^{\pi} \left| \frac{\delta(t)}{\sin \frac{t}{2}} \right| dt + \int_{-\pi}^{\pi} \left| \frac{\delta(t)}{\sin \frac{t}{2}} \right| dt \right\} + 8 \int_{-\pi}^{\pi} \left| \frac{\delta'(t)}{\sin \frac{t}{2}} \right| dt \right\} \quad (3)
\]

1 TEOREMA. Jeigu nepriklauso kiekvienoje serijoje atsitiktiniai dydžiai \(X_{nj} \), \(j = 1, 2, \ldots, k_n \), \(n = 1, 2, \ldots \) įgyja neniegiamas sveikas reikšmes, turi vidurkius \(\mathrm{EX}_{nj} = \lambda_j^{(n)} > 0 \), ir

\[
\overline{\alpha}_{jk} = \mathbb{E}|X_{nj}(X_{nj} - 1) \cdots (X_{nj} - k + 1)| \leq \frac{k! \lambda_j^{(n)}}{\Delta_{kn}}, \quad k = 2, 3, \quad (4)
\]

\(o \)

\[
10 \leq \Delta_{kn} \leq \left(\max_{1 \leq j \leq k_n} \lambda_j^{(n)} \right)^{-1}, \quad (5)
\]

\(tai \)

\[
(1 + |x|)|\mathbb{P}(S_{kn} < x) - \Pi(x; \lambda) - \frac{1}{2} \Gamma_2 \Pi_1([x]; \lambda)| \leq \frac{1}{\Delta_{kn}}, \quad (6)
\]

\(\chi \lambda = \sum_{j=1}^{k_n} \lambda_j^{(n)}, \quad \Gamma_2 = \sum_{j=1}^{k_n} \gamma_j \). \(\gamma_j \)

Išrodymas. Ivertinsime

\[
|\delta_n(t)| = |f_{S_{kn}}(t) - g(t)| = \left| f_{S_{kn}}(t) - e^{\lambda(t) - 1} \left(1 + \frac{1}{2} \Gamma_2 (e^{\lambda(t)} - 1) \right)^2 \right|.
\]

Analioškai, kaip ir [2], gauname

\[
f_j(t) = 1 + \alpha_j (e^{\lambda(t)} - 1) + \frac{\alpha_j^2}{2!} (e^{\lambda(t)} - 1)^2 + \frac{\alpha_j^3}{3!} (e^{\lambda(t)} - 1)^3,
\]

\(\chi \beta_j = \int_0^1 (1 - r) \psi_n''(r (e^{\lambda(t)} - 1)) dr, \)

\(o \ \varphi_n(t) = \mathbb{E}(t + z)^{X_{nj}} \). Kai \(z_0 = (t + z)^{X_{nj}} - 1 \), tai

\[
|\psi_n''(z_0)| = \left| \mathbb{E} X_{nj}(X_{nj} - 1)(X_{nj} - 2)(1 + z_0)^{X_{nj} - 3} \right| \leq \overline{\alpha}_{j3}.
\]
ir

$$|\beta_{j3}| \leq \frac{1}{3} \alpha_{j3}.$$

Tada

$$\exp \log f_j(t) = \exp \left\{ \alpha_{j1}(e^{it} - 1) + \frac{\gamma_{j2}}{2!}(e^{it} - 1)^2 + r_{j1}(t) + r_{j2}(t) \right\},$$

čia

$$r_{j1}(t) = \left(\frac{\beta_{j3}}{2!} - \frac{\alpha_{j1} \alpha_{j2}}{2!} \right) (e^{it} - 1)^3 - \frac{1}{2} \left(\frac{\alpha_{j2}}{2!} + \alpha_{j1} \beta_{j3} \right) (e^{it} - 1)^4$$

$$- \frac{\alpha_{j2} \beta_{j3}}{2!} (e^{it} - 1)^5 - \frac{1}{2} \frac{\beta_{j3}^2}{(2!)^2} (e^{it} - 1)^6$$

ir

$$r_{j2}(t) = \sum_{k=3}^{\infty} \frac{(-1)^{k-1}}{k} \left(\alpha_{j1}(e^{it} - 1) + \frac{\alpha_{j2}}{2!}(e^{it} - 1)^2 + \frac{\beta_{j3}}{2!}(e^{it} - 1)^3 \right)^k.$$

Tegul

$$r(t) = \sum_{j=1}^{k_n} (r_{j1}(t) + r_{j2}(t)).$$

Tada

$$\exp \log f_{S_{k_n}}(t) = \exp \left\{ \sum_{j=1}^{k_n} \log f_j(t) \right\}$$

$$= \exp \left\{ \lambda (e^{it} - 1) + \frac{\Gamma_2}{2!} (e^{it} - 1)^2 + r(t) \right\}. \quad (7)$$

Iš (4), (5), gauname

$$|r(t)| \leq 3,06 \frac{\lambda}{\Delta_n^2} |e^{it} - 1|^3.$$

Iš (4), turime

$$\frac{1}{2} |\Gamma_2| \leq \frac{\lambda}{\Delta_n^2}.$$

Kadangi $|e^{\lambda (e^{it} - 1)| = e^{-2\lambda \sin^2 \frac{t}{2}}$ ir $|e^{it} - 1| = 2 \sin \frac{t}{2}$, tai

$$|\delta_n(t)| = \left| f_{S_{k_n}}(t) - g(t) \right| \leq 32,28 \frac{\lambda}{\Delta_n^2} |\sin \frac{t}{2}|^3 \left| e^{-\lambda \sin^2 \frac{t}{2}} \right|. \quad (8)$$
 Analogiškai įvertiname ir $|\delta'_n(t)| = |f'_{Snk_n}(t) - g'(t)|$. Mūsų atveju,

$$|\delta'_n(t)| = |f'_{Snk_n}(t) - g'(t)| \leq 72.55 \frac{\lambda}{\Delta_n^2} \sin^2 \frac{1}{2} e^{-\lambda \sin^2 t}.$$ \hspace{1cm} (9)

Istate (8) ir (9) iš (2), gauname

$$(1 + |x|) \left| P(S_{nk_n} < x) - \Pi(x; \lambda) - \frac{1}{\Gamma_2 \pi_1(|x|; \lambda)} \right| \leq \frac{49 \lambda}{\Delta_n^2}.$$ \hspace{1cm} (8)

Analogiškai įrodoma kita teorema.

2 TEOREMA. Jeigu nepriklausomi kiekvienoje serijoje atsitiktiniai dydžiai $X_{nj}, j = 1, 2, \ldots, k_n; \ n = 1, 2, \ldots$ įgyja neneigiamas sveikas reikšmes, turi vidurkius $E X_{nj} = \lambda^{(n)}_j > 0$, ir

$$\sigma_{jk} = E[X_{nj}(X_{nj} - 1) \cdots (X_{nj} - k + 1)] \leq \frac{k! \lambda_{(n)}^{(n)}_j}{\Delta_n^{k-1}}, \quad k = 2, 3,$$ \hspace{1cm} (10)

o

$$10 \leq \Delta_n \leq \left(\max_{1 \leq j \leq k_n} \lambda^{(n)}_j \right)^{-1},$$ \hspace{1cm} (11)

tai

$$(1 + |x|)^2 \left| P(S_{nk_n} < x) - \Pi(x; \lambda) - \frac{1}{\Gamma_2 \pi_1(|x|; \lambda)} \right| \leq C \frac{\lambda}{\Delta_n^2},$$ \hspace{1cm} (12)

čia $\lambda = \sum_{j=1}^{k_n} \lambda^{(n)}_j$, $\Gamma_2 = \sum_{j=1}^{k_n} \gamma_j^2$, $o C$ - absoliuti konstanta.

Literatūra

SUMMARY

K. Padvelskis. Nonuniform estimates in the approximation by the Poisson law

Poisson approximation for the sum of independent random variables is investigated in this paper.

Keywords: Poisson distribution, independent random variables, nonuniform estimates.