On sheaves on midsymmetrical quantaloids

Remigijus Petras GYLYS *e-mail:* mathematica@ktl.mii.lt

1. Introduction

In an earlier paper [2] we studied presheaves and sheaves on an arbitrary quantaloid (category enriched in the category of complete sup-lattices subject to certain laws). In [3] we began a study of presheaves on quantaloids from a special subclass of quantaloids satisfying "Midsymmetry". In this note we discuss sheaves which specialize in that "midsymmetrical" case.

2. Midsymmetrical quantaloids

DEFINITION 2.1. A *quantaloid* is a locally small category Q such that:

- (i) for all u, v objects in Q, the hom-set Q(u, v) is a complete lattice,
- (ii) composition of morphisms of Q (in this paper denoted by &) preserves arbitrary joins in both variables: $p \& \bigvee_i q_i = \bigvee_i p \& q_i$ and $(\bigvee_i p_i) \& q = \bigvee_i p_i \& q$ for all morphisms p,q of Q and for all families $(p_i), (q_i)$ of morphisms of Q (forming respective composable pairs).

A quantaloid Q will be called midsymmetrical whenever it satisfies

Midsymmetry: p&(q&r)&p' = p&(r&q)&p' for all $p \in Q(u, v), q, r \in Q(v, v), p' \in Q(v, v')$.

We focus on midsymmetrical quantaloids and the traditional requirement on the existence of their units is not imposed. Examples of the one-object quantaloids (which are called quantales) include frames (and thus complete Boolean algebras) and various ideal lattices of rings or C^* -algebras. Many other quantales and quantaloids can be found in [5]. Our basic example is the following

EXAMPLE 2.2. Let Q be a right-sided idempotent quantale (belonging to a class of quantales considered in [4]), i.e., an one-object quantaloid such that, for any $p, q \in Q$, $p\&p \leq p$ and p&p = p. The routine check shows that it is midsymmetrical.

From now Q will be an arbitrary midsymmetrical quantaloid having a small set of objects. Let Q_0 denote this set and Q_1 the set of morphisms of Q.

3. Sheaves on a (midsymmetrical) quantaloid

The notion of a sheaf and a few facts (with omitted proofs) are taken from [2]. We will present the axioms of a sheaf (in Proposition 3.4) and the concept of the compatibility of sub-Q-sets (in Corollary 3.6) in a more close form to those of C.J. Mulvey and M. Nawaz. For the concepts not defined here see [2] (or [3]).

DEFINITION 3.1. Let $(X, A, \uparrow \uparrow)$ be a separated presheaf on a quantaloid Q.

(i) We say that, for a singleton $S = (S, S^{\#})$ of the underlying Q-set (X, A), there exist enough restrictable triplets $(s_x, x, s_x^{\#}) \in Q_1 \times X \times Q_1$ if the following conditions hold:

$$s_{x} = \bigvee \{ s_{x'} \& a_{x',x} | x' \in X, (s_{x'}, x', s_{x'}^{\#}) \text{ restrictable} \}$$
(1)

and

$$s_x^{\#} = \bigvee \{ a_{x,x'} \& s_{x'}^{\#} | x' \in X, (s_{x'}, x', s_{x'}^{\#}) \text{ restrictable} \}$$
(2)

for all $x \in X$. (Note that $(s_x, x, s_x^{\#})$ is restrictable if and only if $s_x = s_x \& s_x^{\#} \& s_x$ and $s_x^{\#} = s_x^{\#} \& s_x \& s_x^{\#}$.)

(ii) A sub-Q-set (J, JA) ⊆ (X, A) with J ⊆ Xu (for some u ∈ Q0) is said to be compatible if the pair E = (E, E[#]) with E = (ex)x∈J, E[#] = (e[#]x)^{x∈J}, and ex = e[#]x = ax (representing a "diagonal" element of A) for x ∈ J) constitutes a singleton of (J, JA) ⊆ (X, A). The singleton E itself is called an *extent* of (J, JA) ⊆ (X, A).

Observe that the bottom extension ${}^{X}\mathcal{E} = ({}^{X}E, {}^{X}E^{\#})$ of the extent $\mathcal{E} = (E, E^{\#})$ of a compatible sub-Q-set $(J, JA) \subseteq (X, A)$ to a singleton of (X, A) is obtained by the formulas obtained by:

$${}^{X}e_{x} = \bigvee_{x' \in J} a_{x',x} \text{and}^{X}e_{x}^{\#} = \bigvee_{x' \in J} a_{x,x'}$$
(3)

for all $x' \in X$.

DEFINITION 3.2. We say that a separated presheaf $(X, A, \uparrow \uparrow)$ on Q is a *sheaf* on Q if it satisfies the following

Sheaf Conditions:

- (i) for every singleton S of the underlying Q-set (X, A), there exist enough restrictable triplets $(s_x, x, s_x^{\#})$;
- (ii) for every compatible sub-Q-set $(J, {}_{J}A) \subseteq (X, A)$, the bottom extension of its extent \mathcal{E} to a singleton of (X, A) (given by (3)) is of the form

$${}^{X}\mathcal{E} = \mathcal{A}_{y} \tag{4}$$

for some (unique) element $y \in X$ (where $\mathcal{A}_y = ((a_{y,x})_{x \in X}, (a_{x,y})^{x \in X}))$.

The next fact is taken from [2].

PROPOSITION 3.3. Let $(X, A, \uparrow \uparrow)$ be a separated presheaf and let $(J, JA) \subseteq (X, A)$ be a sub-Q-set with $J \subseteq X_u$ (for some $u \in Q_0$). Then the following two conditions are equivalent:

(i) (J, JA) ⊆ (X, A) is compatible;
(ii) a_x&a_{x'} = a_{x,x'} ≤ a_x ∧ a_{x'} for all x, x' ∈ J.

The following proposition shows that we can weaken the axiom (ii) of Definition 3.2.

PROPOSITION 3.4. Let $(X, A, \uparrow \uparrow)$ be a separated presheaf and $(J, JA) \subseteq (X, A)$ be a compatible sub-Q-set. Then the following assertions are equivalent:

(i) the bottom extension of the extent of (J, JA) is of the form

$${}^{X}\mathcal{E} = \mathcal{A}_{y}$$

for some element $y \in X$, that is, there exists a unique (by Separation) element $y \in X$ for which

$$a_{y,x} = \bigvee_{x' \in J} a_{x',x} \quad \text{and} \ a_{x,y} = \bigvee_{x' \in J} a_{x,x'}$$
(5)

for all $x \in X$;

(ii) the extent of (J, JA) is of the form

$$\mathcal{E} = {}_J \mathcal{A}_y$$

for some unique element $y \in X$ for which

$$a_y = \bigvee_{x \in J} a_x,\tag{6}$$

where ${}_{J}\mathcal{A}_{y} = ((a_{y,x})_{x \in J}, (a_{x,y})^{x \in J})$, that is, there exists a unique element $y \in X$ satisfying (6) and the following relations

$$a_{y,x} = a_x = a_{x,y} \tag{7}$$

hold for all $x \in J$.

The implication from (i) to (ii) is trivial (taking x = y in (5), one has (6)). To prove that (ii) implies (i), assume (ii). Then, given $x \in X$, on the one hand, we have that

$$\bigvee_{x'\in J} a_{x',x} = \bigvee_{x'\in J} a_{x'} \& a_{x',x} = \bigvee_{x'\in J} a_{y,x'} \& a_{x',x} \leqslant a_{y,x},$$

while, on the other,

$$a_{y,x} = a_y \& a_{y,x} = \bigvee_{x' \in J} a_{x'} \& a_{y,x} = \bigvee_{x' \in J} a_{x',y} \& a_{y,x} \leqslant \bigvee_{x' \in J} a_{x',x},$$

whence the first equality of (5). The second part follows similarly.

PROPOSITION 3.5. Let $(X, A, \uparrow \uparrow)$ be a separated presheaf and let $(J, JA) \subseteq (X, A)$ be a sub-Q-set with $J \subseteq X_u$ (for some $u \in Q_0$) such that the inequality

$$a_x \& a_{x'} \leqslant a_x \wedge a_{x'} \tag{8}$$

holds for all $x, x' \in J$. Then the following conditions are equivalent:

(i) a_x&a_{x'} ↾ x ↾ a_{x'} = a_x ↾ x' ↾ a_x for all x, x' ∈ J,
(ii) a_x&a_{x'} = a_{x,x'} for all x, x' ∈ J.

First of all, we note that the assumption (8) ensures the restrictability of the triplets $(a_x \& a_{x'}, x, a_{x'})$ and (a_x, x', a_x) for all $x, x' \in J$ (and thus legitimates the expression in (i)). To prove the implication (i) \Rightarrow (ii), assume (i), Then, given $x, x' \in J$, we have the following chain of implications:

$$\begin{aligned} a_{a_x} \& a_{x'} \uparrow x \uparrow a_{x'}, a_x \uparrow x' \uparrow a_x &= a_{a_x} \uparrow x' \uparrow a_x \\ \Rightarrow a_x \& a_{x'} \& a_{x,x'} \& a_x &= a_x \& a_{x'} \& a_x \\ \Rightarrow a_x \& a_{x'} \& a_{x,x'} \& a_x \& a_{x'} &= a_x \& a_{x'} \& a_x \& a_{x'} \\ \Rightarrow a_x \& a_x \& a_{x,x'} \& a_{x'} \& a_{x'} &= a_x \& a_x \& a_{x'} \& a_{x'} (\text{by Midsymmetry}) \\ \Rightarrow a_{x,x'} &= a_x \& a_{x'} (\text{by Strictness}), \end{aligned}$$

whence (ii). To prove that (ii) implies (i), assume (ii). Then, given $x, x' \in J$, we have that $a_x \& a_{x'} \& a_x \& a_{x'} = a_x \& a_{x'} \& a_x$, $a_x \& a_{x'} \& a_x = a_x \& a_{x'} \& a_{x,x'} \& a_x$, and that $a_x \& a_{x'} \& a_x \& a_{x'} = a_x \& a_{x',x} \& a_{x'}$, which may be written

 $a_{a_x\&a_{x'}} \uparrow_x \eta_{a_{x'}} = a_{a_x} \uparrow_{x'} \eta_{a_x} = a_{a_x\&a_{x'}} \uparrow_x \eta_{a_{x'}}, a_x \uparrow_{x'} \eta_{a_x} = a_{a_x} \uparrow_{x'} \eta_{a_x,a_x\&a_{x'}} \uparrow_{x \eta_{a_{x'}}}, a_x \uparrow_{x'} \eta_{a_x} = a_{a_x} \uparrow_{x'} \eta_{a_x,a_x\&a_{x'}} \uparrow_{x \eta_{a_{x'}}}, a_x \uparrow_{x'} \eta_{a_x} = a_{a_x} \uparrow_{x'} \eta_{a_x} = a_{a_x} \uparrow_{x'} \eta_{a_x}, a_x \downarrow_{x'} \eta_{a_x} = a_{a_x} \uparrow_{x'} \eta_{a_x}$

whence (i) (by Separation).

In view of Proposition 3.3, we have

COROLLARY 3.6. In the setting of the preceding proposition, the following two conditions are equivalent:

(i))(J, JA) ⊆ (X, A) is compatible;
(ii) a_x&a_{x'} ≤ a_x ∧ a_{x'} and a_x&a_{x'} ↾ x ↾ a_{x'} = a_x ↾ x' ↾ a_x for all x, x' ∈ J.

Now consider the case of a right-sided idempotent quantale in order to compare our concept of sheaf with that of C.J. Mulvey and M. Nawaz.

DEFINITION 3.7. (Definition 27 [4] and Definition 28 [4]). Let Q be a right-sided idempotent quantale and let $(X, E, \downarrow, \uparrow)$ be a presheaf in the sense of C.J. Mulvey and M. Nawaz.

(i) A subset J of X is said to be compatible if

$$Ex \mid x' = x \restriction Ex'$$

for all $x, x' \in J$.

- (ii) A quadruple $(X, E, \downarrow, \uparrow)$ is called a sheaf on Q if, for any compatible subset
 - $J\subseteq X,$ there exists a "join" of J, i.e., a unique element $y\in X$ such that

$$Ey = \bigvee_{x \in J} Ex$$

and
$$Ex \mid y = x$$
 for all $x \in J$.

PROPOSITION 3.8. (Proposition 7.6 [2]). Let (X, A) be a separated quantal set on a right-sided idempotent quantale Q such that its every singleton $S = (S, S^{\#})$ satisfies the condition that $s_x^{\#} = a_x \& s_x$ for all $x \in X$ (observing that every singleton in the sense of C.J. Mulvey and M. Nawaz is so). Let $(X, A, \uparrow^{\land} \uparrow)$ be a presheaf on Q and let $(X, E, \downarrow, \uparrow)$ be the presheaf associated to $(X, A, \uparrow^{\land} \uparrow)$ in the setting of Proposition 6.5 [2]. If $(X, E, \downarrow, \uparrow)$ is a sheaf in the sense of Definition 3.7, then the underlying presheaf $(X, A, \uparrow^{\land} \uparrow)$ is a sheaf in our sense.

References

- [1] G. Van den Bossche, Quantaloids and non-commutative ring representations, *Appl. Categ. Structures*, **3**, 305–320 (1995).
- [2] R.P. Gylys, Sheaves on quantaloids, Liet. matem. rink., 40(2), 133-171 (2000).
- [3] R.P. Gylys, Presheaves on midsymmetrical quantaloids, Liet. matem. rink., 41(spec. nr.), 58-66 (2001).
- [4] C.J. Mulvey, M. Nawaz, Quantales: quantal sets, in: Non-Classical Logics and their Applications to Fuzzy Subsets, U. Höhle, E.P. Klement (Eds.), Kluwer, Boston (1995), pp. 159–217.
- [5] K.I. Rosenthal, *The Theory of Quantaloids*, Pitman Research Notes in Mathematics 348, Longman, Burnt Mill, Harlow (1996).

Apie pluoštus virš midsimetriškų kvantaloidų

R.P. Gylys

Nagrinėjami priešpluoščiai ir pluoštai virš midsimetriškų kvantaloidų. Nustatytos sąlygos, kuriomis priešpluoštis tampa pluoštu.