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1. Introduction

The estimator of a parameter in some area of population is called a small area estimator
if it uses data from the neighboring areas.

The need for the estimator of this kind arises where the sample size in the area of
estimation is small and the accuracy of a direct estimator, based only on the sample data
of this area, is not sufficient or sometimes there are no observations in this area at all.

Various models are often used in order to improve precision of the estimators. Auxi-
liary data are needed for this. The data available depend on the country. It is impossible to
say in advance which estimator is the most suitable one in each situation. Experimental
estimation is needed. This kind of experiment is done in this paper for the income per
capita in the rural area of Lithuania.

Two kinds of small area estimators – James–Stein estimator ([2]) and empirical best
linear unbiased predictor (EBLUP) ([3]) – are used for the data of the Lithuanian hou-
sehold budget survey (HBS). The direct estimates, based on the sample design, and cur-
rently used calibrated estimates are also presented to compare.

The results of the paper are aimed at choosing the most suitable estimators in HBS
and can be helpful for similar purposes in other surveys, too.

2. Household budget survey

HBS is one of the most important sample surveys in official statistics of every country.
It estimates income in cash and kind and expenditure per capita of the population of the
country and in various parts of the population. Sometimes these estimates have inadmis-
sibly high variances.

The Lithuanian HBS uses a stratified sampling design with one stage sampling in
the cities and two stage cluster sampling in the medium and small towns and the rural
area. Administrative division of Lithuania consists of 10 counties which are divided into
districts. When sampling in the rural area, a sample of districts is drawn in the first stage
and households are selected in the second stage. The sample size in the district is 10–30
households in a quarter, and part of the districts is not sampled at all.

Let us denote by U the finite population of size N . Ui, Ui ⊂ U , are population areas
of sizes Ni and sample sizes in those areas ni, i = 1, . . . ,m, n1 + . . .+ nm = n. Let us
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denote by y the study variable with values yij , j = 1, . . . , Ni, i = 1, . . . ,m in the areas.
If y denotes income of a person living in the rural area, income per capita in the area Ui

is a ratio Ii = tyi/Ni, tyi =
∑

j∈Ui
yij . Its direct, design based estimator Îi = t̂yi/N̂i is

used.
The coefficient of variation of the estimates is lower than 3% in most cases, and it

reaches 18% in some cases. The accuracy of the estimates in the areas is supposed to be
not sufficiently high because of the too small sample size in those areas.

Let us denote the parameter to be estimated (a function of totals) by θi, i = 1, . . . ,m,
and its direct estimator by θ̂i.

3. Methods used

3.1. Standard linear regression model

Suppose there are k auxiliary variables x1, . . . , xk with values xij , i = 1, . . . , k, j =
1, . . . ,m, known on the area level, characterizing those areas. Then the standard linear
regression model for the direct estimators θ̂ can be used to predict θ:

θ̂i = β0 + β1x1i + . . . + βkxki + ui, (1)

i = 1, . . . ,m with the model parameters β0, β1, . . . , βk and independent random errors
ui with normal distribution N(0, σ2).

The ordinary least squares (OLS) estimation of the model parameters β̂0, β̂1, . . . , β̂k

yields us an estimator

θ̂0
i = β̂0 + β̂1x1i + . . . + β̂kxki. (2)

It is called a synthetic estimator: θ̂0
i = θ̂0

i (synth). It allows us to predict the parameter in
any area with the known values of the auxiliary variables. It is possibly biased.

3.2. James–Stein estimator

Assume the direct estimators θ̂i, i = 1, . . . ,m to be independent normally distributed
random variables with means θi and a common known variance ψ. The James–Stein
estimator (Fay et al., [2]) is given by

θ̂i(JS) = φ̂JS θ̂i + (1 − φ̂JS)θ̂0
i , i = 1, . . . ,m, (3)

here

1 − φ̂JS =
ψ

d/(m− 2 − k)
, m > 3

with d =
∑m

i=1(θ̂i − θ̂0
i )

2 and the standard linear regression model θ̂0
i (2), based on k

regressors. The James–Stein estimator belongs to the class of composite estimators.
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This estimator shifts the direct estimator θ̂i in the direction of the model based esti-
mator θ̂0

i .
A direct estimator is usually unbiased or approximately unbiased and has high va-

riance. A synthetic estimator is usually biased and has small variance. Composite estima-
tors, like the James–Stein estimator, are a compromise between the latter two.

The variance ψ is actually unknown, and it is estimated by

ψ̂ =
1
m

m∑
l=1

1
nl

1
n−m

m∑
i=1

ni∑
j=1

(yij − ȳi)2,

ȳi is the sample average in the area i. Nevertheless, the fact of estimation of ψ is not taken
into account when estimating MSE(θi(JS)).

The mean square error of the James–Stein estimator equals

MSE(θ̂yi(JS)) ≈ φ̂2
iV ar θ̂i + (1 − φ̂i)2MSE(θ̂0

i ), i = 1, 2, . . . ,m

with M̂SE(θ̂0
i ) = (θ̂0

i − θ̂i)2. It is unstable. The average over the small areas is also used
as an estimator of MSE(θ̂i(JS)) and it is more stable:

M̂SE(JS) =
1
m

m∑
i=1

M̂SE(θ̂i(JS)).

3.3. Empirical best linear unbiased predictor

The weights in expression (3) of the James–Stein estimator are constant for any area. If
the coefficients depend on the area, it can be expected to get a higher precision of the
estimator. EBLUP is on of the estimators of such kind.

We assume that the direct estimators θ̂i can be expressed by

θ̂i = θi + ei, i = 1, . . . ,m, (4)

here ei’s are independent sampling errors with distributions N(0, ψi) for fixed θi. We
assume also the superpopulation model

θi = β0 + β1x1i + . . . + βkxki + vi, (5)

here vi’s are independent and identically distributed random variables with normal dist-
ribution N(0, σ2

v). Combining (4) and (5), we obtain the area level model

θ̂i = β0 + β1x1i + . . . + βkxki + ξi, (6)

here ξi = vi + ei are independent random variables with the distribution N
(
0, σ2

v + ψi

)
.

The variances ψi, i = 1, . . . ,m are unknown, and can be estimated by ψ̂i = σ̂2
e/ni,

σ̂2
e =

1
n−m

m∑
i=1

∑
j

(yij − ȳi)2,
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here n is the number of elements in the sample, ȳi is the sample average of y in the area i.
Estimation of this regression model gives us the synthetic estimator of θ

θ̂
(s)
i = xT

i β̃(σ̂2
v), (7)

with

β̃(σ̂2
v) =

(
XTD−1X

)−1
XTD−1θ̂.

θ̂ = (θ̂1, . . . , θ̂m)T , X is a matrix, the columns of which are the vectors xi = (1, x1i,

. . . , xki)T . D is a diagonal matrix with
(
σ̂v + σ̂2

e

ni

)
on the diagonal, σ̂v = max(0, σ̃v),

σ̃v =
1

m− k

( m∑
i=1

(θ̂i − xT
i β̂)2 −

m∑
i=1

σ̂2
e

ni

(
1 − xT

i (XT X)−1xi

))
,

β̂ = (β̂0, β̂1, . . . , β̂k)T is the estimator of standard regression coefficients (2). The mean
square error of the estimator (7) can be estimated by

M̂SE(θ̂(s)
i ) = σ̂2

v + xT
i V̂xi, V̂ = (XT D−1X)−1.

The variances ψi are considered here as known, and their estimation is not taken into
account in M̂SE(θ̂(s)

i ).
In order to avoid a possible bias of estimator (7), the composite estimator (EBLUP)

is used with area specific weights, in contrast to the James–Stein estimator (3), Ghosh et
al. [3]:

θ̂EB
i (σ̂2

v) = γ̂iθ̂i + (1 − γ̂i)XT
i β̃(σ̂2

v) (8)

with

γ̂i =
σ̂2

v

σ̂2
v + σ̂2

e/ni
.

The estimate of its mean square error is

M̂SE(θ̂EB
i (σ̂2

v)) = g1i(σ̂2
v) + g2i(σ̂2

v) + g3i(σ̂2
v),

g1i(σ̂2
v) = γ̂iσ̂

2
e/ni, g2i(σ̂2

v) = (1 − γ̂i)2xT
i (XTD−1X)−1xi,

g3i(σ̂2
v) =

(σ̂e/ni)2

(σ̂2
v + σ̂2

e/ni)3
2
m2

m∑
j=1

(
σ̂2

v +
σ̂2

e

nj

)2

, j = 1, . . . ,m.
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4. Estimation results

The data of the HBS survey of the fourth quarter of 2002 are used here for estimation.
Demographical data and agricultural production data are used to build an income model.
It has been found that the variables significantly affecting income per capita are:

MILK – amount of milk produced per citizen in the rural area of the district,
CORN – amount of corn yield produced per citizen in the rural area of the district,
MEN50_65 – part of citizens of the rural area of the district composed of men aged

50–65,
WOMEN50 – part of citizens of the rural area of the district consisting of women

over 50,
EMP – employment level in the district,
SOC – social allowances per citizen in the district.
The model obtained is presented in Table 1.
All the explanatory variables are significant in the model except the employment le-

vel. 63% of the total sum of squares is explained by the model. The highest correlation
between θ̂ and auxiliary variables is corr(θ̂, log(SOC)) = −0.44, other correlations are
very low.

The estimates are presented in Fig. 1. The domains of the estimation (districts) are
ordered by the sample size (number of individuals), and vary from 33 to 92. The estimates
of the mean square errors of the estimators for districts, are presented in Fig. 2.

Six different estimates are represented. I direct is a direct estimate of income based on
the sample design, no auxiliary information used. I OLS is an ordinary least squares reg-
ression model, described in Table 1, the sample design is avoided. I JS is the James–Stein
estimator with I OLS as a synthetic part. I sint – regression model (6) is used. I EBLUP
is the best linear unbiased predictor (8) used for the estimation. I cal is a calibrated esti-
mator, currently used in the real survey. Calibration of design weights is used in order to
adjust the sample to the demographic data and to nonresponse (Deville et al. [1]).

The estimated weight in the James–Stein estimator (3) is φ̂JS = 0.64, the average
weight in the EBLUP estimator γ̄ = 1

m

∑m
i=1 γ̂i = 0.6 and does not differ significantly

from that of φ̂JS .

Table 1

Income model

Auxiliary variable β̂ t statistic p value

Intercept 387 2,62 0.0030

CORN and MEN50–65 3302 3,55 0.0019

CORN and MILK −187 −3,36 0.0030

log(MILK) −151 −4,29 0.0003

MILK and WOMEN50 1204 4,44 0.0002

EMP −156 −1,51 0.1453

log(SOC) −79 −2,34 0.0292
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Fig. 1. Estimates of the income per capita.

Fig. 2. Accuracy of the estimates of income per capita.

5. Conclusions

Fig. 1 shows that two regression estimates do not differ significantly, as well as two
composite estimates.

The averages over small areas of the estimated mean square errors (MSE) of four
estimates of income I are presented in Table 2.

Table 2

Average MSE of estimates

Estimator I direct I JS I EBLUP I cal

MSE 790 649 877 404



An example of small area estimation in finite population sampling 503

The James–Stein estimator performs better than the direct one.
The MSE of the composite estimator EBLUP performs equally along the areas, im-

proving a very low accuracy of the direct estimator in some areas, however, without any
improvement in the average accuracy. It can be explained by the low correlation between
the direct estimates in the areas and auxiliary variables. So, some better auxiliary infor-
mation has to be found.

The currently used calibrated estimator has the smallest MSE.
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Mažos srities ↪iverčio pavyzdys imtyje iš baigtinės populiacijos

D. Krapavickaitė

Pateikiami metodai, kuriais, panaudojant papildom ↪a informacij ↪a, galima patikslinti ↪iverčius sri-
tyse, kuriose turima maža imtis. Jie panaudojami Lietuvos kaimo gyventoj ↪u vidutini ↪u pajam ↪u rajo-
nuose vertinimui.


