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1. Introduction

A lot of physical systems are naturally described as Wiener systems with piecewise linear
nonlinearity, i.e., when the linear system is followed by a hard nonlinearity-like saturation
or dead-zone [1]. A special class of such systems is piecewise affine (PWA) systems,
consisting of some subsystems, between which occasional switchings happen at different
time moments [2]. Assuming the nonlinearity to be piecewise linear, one could let the
nonlinear part of the Wiener system be represented by different regression functions with
some parameters, that are unknown beforehand. In such a case, observations of the output
of a Wiener system could be partitioned into distinct data sets according to different
descriptions. The boundaries of sets of observations depend on the value of the unknown
threshold a – observations are divided into regimes subject to whether the some observed
threshold variable is smaller or larger than a [3]. Thus, there arises a problem, first, to find
a way to partition the available data, second, to calculate the estimates of parameters of
regression functions by processing particles of observations to be determined, and, third,
to get the unknown threshold.

2. Statement of the problem

The Wiener system consists of a linear part G(q,Θ) followed by a static nonlinearity
f(·, η). The linear part of the PWA system is dynamic, time invariant, causal, and stable.
It can be represented by a time invariant dynamic system (LTI) with the transfer function
G(q,Θ) as a rational function of the form

G(q,Θ) =
b1q

−1+, . . . ,+bmq−m

1 + a1q−1+, . . . ,+amq−m
=

B(q,b)
1 + A(q, a)

(1)

with a finite number of parameters

ΘT=(b1, . . . , bm, a1, . . . , am), bT = (b1, . . . , bm), aT = (a1, . . . , am), (2)

that are determined from the set Ω of permissible parameter values Θ. Here q is a time-
shift operator, the set Ω is restricted by conditions on the stability of the respective diffe-
rence equation. The unknown intermediate signal

x(k) =
B(q,b)

1 + A(q, a)
u(k) + v(k), (3)
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Fig. 1. The PWA system with the process noise v(k) and that of the measurement e(k). The linear dyna-
mic part G(q, Θ) of the PWA system is parameterised by Θ, while a static nonlinear part f(·, η) – by η.
Signals: u(k) is input, y(k) is output, x(k) is an unmeasurable intermediate signal.

generated by a linear part of the PWA system (1) as a response to the input u(k) and
corrupted by the additive noise v(k), is acting on a static nonlinear part f(·, η) (Fig. 1)
with the vector of parameters η , i.e.,

y(k) = f(x(k), η) + e(k). (4)

Here the nonlinear part f(·, η) of the PWA system is a saturation-like function of the
form [4]

f(x(k), η) =




c0 + c1x(k) if x(k) � −a,

x(k) if −a � x(k) � a,
d0 + d1x(k) if x(k) � a,

(5)

that could be partitioned into three functions. These functions are: f{x(k;Θ), c, a} =
c0 + c1x(k), f{x(k;Θ), a} = x(k), and f{x(k;Θ),d, a} = d0 + d1x(k). The function
f{x(k;Θ), c, a} has only negative values, when x(k) � −a, f{x(k;Θ), a} has arbitrary
positive, as well as negative values, when −a � x(k) � a, and f{x(k;Θ),d, a} has only
positive values, when x(k) � a. Here x(k;Θ) ≡ x(k), cT = (c0, c1), c0 = −a(1 − c1),
0 < c1 < a, dT = (d0, d1), d0 = a(1 − d1), 0 < d1 < a.

The process noise v(k) ≡ ξ(k) and the measurement noise e(k) ≡ ζ(k) are added to
an intermediate signal x(k) and the output y(k), respectively, ξ(k), ζ(k) are noncorrela-
ted between each other sequences of independent Gaussian variables with E{ξ(k)} = 0,
E{ζ(k)} = 0, E{ξ(k)ξ(k + τ)} = σ2

ξδ(τ), E{ζ(k)ζ(k + τ)} = σ2
ζδ(τ); E{·} is a

mean value, σ2
ζ , σ

2
ξ are variances of ζ and ξ, respectively, δ(τ) is the Kronecker delta

function.
The aim of the given paper is to estimate parameters (2) of the linear part (1) of the

PWA system, parameters η = (c0, c1, d0, d1)T of the nonlinear part (5) and the threshold
a of nonlinearity (5) by processing N pairs of observations u(k) and y(k).

3. The data rearrangement

At first, let us rearrange the data y(k) in an ascending order of their values. Thus, the
observations of the rearranged output ỹ(k) of the PWA system should be partitioned into
three data sets: left-hand side data set with values lower or equal to negative a, middle
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data set with values higher than negative a but lower or equal to a, and right-hand side
data set with values higher than a (it is assumed that no less than 50% observations are
concentrated on the middle-set and approximately by 25% or less on any side set). The
observations with the highest and positive values will be concentrated on the right-hand
side set, while the observations with the lowest and negative values on the left-hand side
one. The observations of the middle data set (in such a case observations of ỹ(k) coincide
with the respective observations of the intermediate signal x(k)) will be concentrated now
around the time origin. Therefore one could get these observations simply by choosing
from the time origin in both directions not less than 25% of observations of ỹ(k).

At second, let us reconstruct an unmeasurable intermediate signal x(k) using the
middle data set of ỹ(k) ∀ k ∈ 1,N. To calculate the auxiliary signal x̂(k) (the esti-
mate of unmeasurable x(k)) one could approximate the model of the linear part of the
PWA system (1) by the finite impulse response (FIR) system of the form [5]

ỹ(k) = β0 + β1u(k) + β2u(k − 1) + . . . + βνu(k − ν + 1) + e(k). (6)

Here

βT = (β0, β1 . . . , βν) (7)

is a (ν + 1) × 1 vector of unknown parameters, ν is the order of the FIR filter. In this
case, the dependence of some regressors on the process output will be facilitated, and
the assumption of the ordinary LS that the regressors depend only on the nonnoisy input
signal, will be satisfied. This is the main consequence of replacing the initial transfer
function G(q,Θ) of the linear part of the PWA system by the FIR filter (6). Then, the
parametric estimation technique, based on ordinary LS, could be applied in the estimation
of parameters (7) of given FIR system

Ỹ = Λβ, (8)

using the rearranged observations of the middle data-set, because the rearrangement of
observations does not influence the accuracy of estimates to be calculated (observations of
the output y(k) could be rearranged in an ascending order of their values by interchanging
equations in the initial system (8)). Here Ỹ is the (L − ν) × 1 vector of the middle data
set of ỹ(k), Λ is the (L− ν)× (ν + 1) regression matrix, consisting only of observations
of the input u(k), besides, L < N. To estimate parameters β, one can use the expression

β̂ =
(
ΛTΛ

)−1
ΛTY, (9)

where β̂ is a (ν+1)×1 vector of the estimates of parameters (7). Afterwards, the estimate
x̂(k) of the intermediate signal x(k) could be determined using (6), where, instead of the
true values (7), their estimates β̂ are substituted, i.e.,

x̂(k) = β̂0 + β̂1u(k) + β̂2u(k − 1) + . . . + β̂νu(k − ν + 1). (10)
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The estimates of parameters (2) of the transfer function G(q,Θ) are calculated accor-
ding to

Θ̂ =
(
XT X

)−1
XT U, (11)

Here

Θ̂T =
(
b̂, â

)T

, b̂T =
(
b̂1, . . . , b̂m

)
, âT = (â1, . . . , âm) (12)

are a 2m× 1,m× 1,m× 1 vectors of the estimates of parameters, respectively, X is the
(N2 − m) × 2m matrix, consisting of observations of the input u(k) and the auxiliary
signal x̂(k), and U is the (N2−m−1)×1 vector, consisting of the observations of x̂(k),
N2 is the whole number of observations of the middle data set.

Estimates of the parameters c0, d0 and c1, d1 are calculated by the ordinary least squ-
ares, too. In such a case, the sums of the form

I(c0, c1) =
N1∑
i=1

[
ỹ(i) − c0 − c1˜̂x(i)

]2

= min!, (13)

I(d0, d1) =
N∑

j=N2+1

[
ỹ(j) − d0 − d1

˜̂x(j)
]2

= min!, (14)

are to be minimized in respect of parameters c0, c1 and d0, d1, respectively, using side-
set data particles of ỹ(k) and observations of the auxiliary signal x̂(k). Here N1 is the
number of observations of the left-side set, respectively, ˜̂x(k) are the observations of the
signal x̂(k) that were rearranged in accordance with ỹ(k).

The estimates of the threshold a for the right-hand side and left-hand side sets are
found according to

â = d̂0/(1 − d̂1), â = ĉ0/(1 − ĉ1), (15)

respectively.
In order to determine how different realizations of process and measurement noises

affect the accuracy of estimation of unknown parameters, we have used the Monte Carlo
simulation with 10 data samples, each containing 100 input-output observation pairs.
10 experiments with the same realization of the process noise v(k) and different reali-
zations of the measurement noise e(k) of different levels of its intensity were carried
out. The intensity of noises was assured by choosing respective signal-to-noise ratios
(SNR) (the square root of the ratio of signal and noise variances). For the process noise
SNRv was equal to 100 and for the measurement noise SNRe: 1, 10, 100. As inputs for
all given nonlinearities, the periodical signal and white Gaussian noise with variance 1
were chosen. In each ith experiment the estimates of parameters were calculated. Du-
ring the Monte Carlo simulation, averaged values of the estimates of parameters and
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of the threshold and their confidence intervals were calculated. In Tables 1, 2 for each
input the averaged estimates of parameters and threshold a of the simulated PWA sys-
tem (Fig. 1) with the linear part (1) (b1 = 0.3; a1 = −0.5) and piecewise nonlinearity (5)
(c0 = −0.9, c1 = 0.1, d0 = 0.9, d1 = 0.1, a = 1) with their confidence intervals are pre-
sented. It should be noted that in each experiment here the value of SNRv was fixed and
the same while, the values of SNRe were varying due to different realizations of e(k).
The Monte Carlo simulation (Tables 1, 2) implies that the accuracy of parametric identi-
fication of the PWA system depends on the intensity of measurement noise.

The problem of identification of PWA systems could be essentially reduced by a
simple data rearrangement in an ascending order of their values. Thus, the available data
are partitioned into three data sets that correspond to distinct threshold regression mo-
dels. Later on the estimates of unknown parameters of linear regression models could be
calculated by processing the respective sets of input and rearranged output observations.

Table 1

Averaged estimates of the parameters b1, a1, c0, c1, d0, d1, and thresholds a, −a with their confidence inter-
vals. Input: the periodical signal. SNRv = 100

Estimates SNRe = 1 SNRe = 10 SNRe = 100

b̂1 0.28 ± 0.07 0.3 ± 0.00 0.3 ± 0.00

â1 −0.52 ± 0.06 −0.5 ± 0.00 −0.5 ± 0.00

ĉ0 −0.85 ± 0.31 −0.89 ± 0.04 −0.9 ± 0.00

ĉ1 0.16 ± 0.21 0.1 ± 0.02 0.1 ± 0.00

d̂0 1 ± 0.5 0.89 ± 0.04 0.9 ± 0.00

d̂1 0.04 ± 0.4 0.1 ± 0.02 0.1 ± 0.00

â 0.97 ± 0.25 1 ± 0.02 1 ± 0.00

−â −1 ± 0.22 −1 ± 0.02 −1 ± 0.00

Table 2

The values and notation are the same as in Table 1. Input – the Gaussian white noise

Estimates SNRe = 1 SNRe = 10 SNRe = 100

b̂1 0.31 ± 0.04 0.3 ± 0.00 0.3 ± 0.00

â1 −0.39 ± 0.08 −0.5 ± 0.01 −0.5 ± 0.00

ĉ0 −0.5 ± 0.86 −0.84 ± 0.06 −0.89 ± 0.00

ĉ1 0.42 ± 0.72 0.1 ± 0.05 0.1 ± 0.00

d̂0 1.07 ± 0.51 0.91 ± 0.06 0.9 ± 0.00

d̂1 0.04 ± 0.44 0.15 ± 0.05 0.1 ± 0.00

â 1.03 ± 0.4 0.99 ± 0.02 1 ± 0.00

−â −1.21 ± 0.19 −1 ± 0.02 −1 ± 0.00
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Apie Vinerio sistem ↪u identifikavim ↪a

R. Pupeikis

Straipsnyje nagrinėjamas Vinerio sistem ↪u laipsniškas tiesinės dalies, aprašomos skirtumine
lygtimi su nežinomais koeficientais ir dalimis tiesiško netiesiškumo su nežinomais nuožulnu-
mais bei nežinomu slenksči ↪u junginys. Parodyta, kad pertvarkius išėjimo signalo stebėjimus pagal
didėjančias j ↪u reikšmes, galima išskirti vidurin ↪e stebėjim ↪u dal ↪i, atitinkanči ↪a nestebimo tarpinio sig-
nalo stebėjimus. Pasiūlytas pilno tarpinio signalo atstatymo būdas pagal ↪iėjimo signalo ir išėjimo
signalo vidurinės dalies stebėjimus. Nežinom ↪u tiesinės Vinerio sistemos dalies koeficient ↪u ir dali-
mis tiesiško netiesiškumo parametr ↪u bei slenksčio ↪iverčiai gaunami mažiausi ↪uj ↪u kvadrat ↪u metodo
algoritmais, apdorojant stebim ↪u ↪iėjimo, pertvarkyto išėjimo bei atkurto tarpinio signal ↪u duomenis.
Pateikti modeliavimo rezultatai.


