A central limit theorem for numbers satisfying a class of triangular arrays associated with Hermite polynomials
Articles
Igoris Belovas
Vilnius University, Vilnius Gediminas Technical University
https://orcid.org/0000-0002-0478-1102
Published 2021-03-15
https://doi.org/10.15388/LMR.2020.22466
PDF

Keywords

limit theorems
combinatorial numbers
asymptotic enumeration
asymptotic normality
Hermite polynomials

How to Cite

Belovas I. (2021) “A central limit theorem for numbers satisfying a class of triangular arrays associated with Hermite polynomials”, Lietuvos matematikos rinkinys, 61(B), pp. 1-7. doi: 10.15388/LMR.2020.22466.

Abstract

The paper extends the investigations of limit theorems for numbers satisfying a class of triangular arrays. We obtain analytical expressions for the semiexponential generating function the numbers, associated with Hermite polynomials. We apply the results to prove the asymptotic normality of the numbers and specify the convergence rate to the limiting distribution.

   
PDF
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Please read the Copyright Notice in Journal Policy