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Annotation. This paper estimates carbon emissions from energy consumption in 30 Chinese
provinces using the IPCC methodology based on eight types of energy consumption data spanning
from 2005 to 2018. Spatial autocorrelation analysis is applied to investigate changes in spatial
patterns, while the Geographically Weighted Regression (GWR) model is employed to assess the
factors influencing carbon emissions in each province. Three principal findings emerge from the
analysis: first, a significant spatial dependency among carbon emissions is observed across the
provinces. Provinces with high emissions tend to be geographically clustered with others exhibiting
similar levels, forming distinct high-high and low-low agglomeration patterns. However, this spatial
dependency has been weakening over time. Second, carbon emissions display significant local
spatial clustering, with each province exhibiting unique spatial heterogeneity. Finally, the economic
conditions, technological progress, and energy structures vary considerably among provinces leading
to differentiated impacts on carbon emissions. Factors such as economic growth, population size and
energy structure generally contribute to the rise in carbon emissions,
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Introduction

Energy is one of the critical elements of national development. The use of fossil fuels inevitably results in
the emission of large amounts of greenhouse gases, leading to a series of environmental issues. China,
undergoing rapid industrialisation and urbanisation, has become a major consumer of energy and an
emitter of carbon globally. In this context, the spatialisation of CO, emissions is essential for examining
the spatial patterns of emissions, which provides the foundational data necessary for reducing CO,
emissions through spatial pattern optimisation or reconstruction.

To accelerate and improve efforts in reducing CO, emissions, the analysis of emissions across different
sectors in China has garnered significant academic attention. This paper investigates the distribution
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characteristics of energy-related CO, emissions across various regions to facilitate the precise
implementation of reduction measures. Precisely, carbon emissions from energy consumption in
Chinese provinces from 2005 to 2018 are calculated. The emission patterns and spatial relationships of
each province are examined, and the factors influencing these emissions are explored. Ultimately, this
analysis serves as a valuable reference for the development of effective and reasonable emission
reduction strategies.

In recent years, global initiatives advocating for emission reduction and energy conservation have
significantly increased the focus on carbon emissions. Both domestic and international researchers have
explored this topic from various perspectives. The existing literature highlights three key areas of focus:
the accounting of carbon emissions, the factors influencing emissions and their economic correlations
and the spatial patterns as well as evolutionary characteristics of CO, emissions.

Simultaneously, recent analyses of energy-related CO, emissions have concentrated on three main
areas: calculating emissions, examining the relationship between CO, emissions and economic growth
and identifying influencing factors. The predominant method for estimating energy-related carbon
emissions, particularly those from fossil fuels and their derivatives, follows the IPCC guidelines (Zhang,
2020; Zhou et al., 2019; Liu et al., 2016). Research consistently shows a positive correlation between
energy CO, emissions and economic growth (Ang, 2008; Lin et al., 2016; Zheng, Liu, 2011). Moreover,
extensive academic work has identified key determinants of energy consumption and CO, emissions,
including consumption patterns, lifestyle, urbanisation, population, and economic and technological
development Among these, the scale of the economy has been found to exert the most significant
influence on CO, emission fluctuations (Lin et al., 2016; Cheng et al., 2014; Jiang, 2011).

1. Literature Review

In the existing literature, factors influencing CO, emissions have garnered significant attention. For
instance, Li et al. (2011) highlighted that China’s GDP and industrial sector are the most prominent
drivers of CO, emissions. Similarly, Pao et al. (2010) reported that energy consumption significantly
impacts CO, emissions under the Environmental Kuznets Curve (EKC) hypothesis. In a study of twelve
Middle Eastern economies, Al-Mulali (2012) confirmed that foreign direct investment (FDI) and primary
energy consumption are key determinants of emissions. Andreoni et al. (2016) and Xiao et al. (2017)
reached similar conclusions in their respective studies. Likewise, Wang et al. (2013) argued that various
factors, including per capita GDP, urbanisation and population, are correlated with CO, emissions in
China. Additionally, Jayanthakumaran et al. (2012) assessed the short- and long-term relationships
between per capita income, structural changes, energy consumption, and carbon emissions in India and
China. Ang et al. (1998) explored the factors driving changes in energy demand and carbon emissions
from the perspective of China, Korea and Singapore.

In the context of spatial effects, Burnett (2013) investigated the influence of economic activities on state-
level emissions in the US. Using a similar approach, Zhao et al. (2014) examined the mechanisms
influencing carbon emissions at the provincial level in China, finding that population density and per
capita GDP growth can somewhat reduce carbon emission intensities. Wang et al. (2015) identified
economic development as the most significant factor driving the increase in carbon emissions, with
energy structure being the second most prominent factor in China. While economic growth is the primary
factor influencing carbon emissions, national strategies have also altered China’s carbon emission
patterns, with carbon intensity playing an increasingly important role (Pan et al., 2018). Wang et al. (2018)
studied the effects of energy consumption, urbanisation and economic growth on carbon emissions,
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suggesting that income levels and development stages are critical considerations for policymakers
aiming to reduce carbon emissions. In line with this, Xu et al. (2014) identified energy structure and
population size as equally essential factors influencing energy-related CO, emissions. Timmons et al.
(2016) confirmed that population size directly and indirectly impacts CO, emissions, while urban living in
the US typically corresponds to lower CO, emission levels. Shahbaz et al. (2019) also demonstrated that
FDI and energy consumption increase carbon emissions, whereas trade openness reduces them.
Similarly, Kivyiro and Arminen (2014) found that FDI positively affects carbon emissions in some
economies and negatively affects others. Different approaches have been incorporated to scrutinise the
possible impact of CO, discharges. Taking China’s Xinjiang as a case, Huo et al. (2015) adopted a
STIRPAT model to scrutinise the potential effect of socio-economic development on carbon discharges.
Conversely, Yao & Sun (2012) employed the Ward approach to carry out an in-depth analysis of CO,
emissions across diverse areas, highlighting that the intensity of carbon discharges is primarily subject to
coal consumption, energy intensity, and the degree to which the heavily polluting industries are
saturated. In particular, the EKC serves as a critical theory as it triggers the changing trend between the
per capita GDP and pollution in order to demonstrate the influences of economic development (Jebli,
Youssef, 2015). From the carbon intensity’s perspective, the EKC is used extensively to illustrate that
carbon intensity shall persistently heighten in the initial phase of economic development. However, it will
decline with the advancement in economic development. Though several studies examine the influential
mechanism of carbon emission from diverse viewpoints, little is known regarding the comparative
significance of these contributing factors among various levels.

From the perspective of regional disparities in CO, emissions, studies have primarily been categorised
into two main types based on research techniques such as the Theil index and the Gini coefficient
(Mussini, Grossi, 2015; Grunewald et al., 2014). Some researchers have adopted these inequality indices
to assess regional disparities in CO, emissions and identify their sources (Wang et al., 2020). Wang and
Zhou (2018) applied the IDA model and the Theil index to analyse global disparities in carbon emissions
from 1995 to 2009, concluding that these disparities primarily originate from emerging economies,
particularly India and China. Similarly, Pakrooh et al. (2020) highlighted provincial differences in carbon
emissions within Iran’s agricultural sector and analysed their driving factors. In the same vein, Bianco et
al. (2019) examined potential inequality in carbon emissions and energy usage within the EU, finding that
while carbon emission disparities remained relatively stable, GDP was the key driver. Other studies
explored the spatiotemporal variations in CO, emissions (Wang et al., 2021; Li et al., 2021). However,
merely quantifying the inequality in carbon emissions offers limited insights. Therefore, researchers and
policymakers are actively investigating the underlying causes of these disparities to develop practical
strategies for addressing them.

A growing number of scholars have focused on the dynamic changes and factors influencing CO,
emissions. Prominent methods include structural decomposition analysis (SDA; Sajid, 2021), index
decomposition analysis (IDA; Zhang et al., 2021) and STIRPAT-based regression models (Fang et al.,
2022). Su and Ang (2017) utilised a structural decomposition method to introduce an intensity indicator
for detecting carbon emissions from a demand perspective. Similarly, Wang et al. (2016) employed a
multi-regional SDA model to investigate the drivers of carbon emissions at both national and global levels.
However, the input-output tables required for SDA have long update cycles, making it difficult to obtain
recent data. In contrast, IDA allows continuous, time-series analysis (Liu et al., 2021). Afterwards, Su and
Ang (2016) defined two core categories of decomposition, namely SDA and TDA. With the regional
differences’ expansion, certain researchers aimed to explore heterogeneity related to the factors
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impacting CO, discharges on the basis of SDA (Wang, Zhou, 2018). For example, using the spatial IDA in
China from regional and national standpoints, Li et al. (2017) investigated the evaluation of CO,
discharges’ drivers, confirming that the economic scale and energy efficiency act as the major drivers
behind regional disparity in carbon discharges. Likewise, Song et al. (2019) discovered regional variances
in CO, discharges as well as the dynamics of affecting factoring by utilising temporal-spatial IDA using
the panel data from the provinces of China from 2000 to 2015.

In general, hierarchy and scale are significant for effectively understanding the complexity of regional
socio-economic inequality in China, including carbon emissions (Li, Wei, 2010; Geist, Lambin, 2010).
Findings from one spatial scale are not applicable to another, as socio-economic development is subject
to scale changes. Many scholars have suggested that geographical phenomena exhibit varying
developmental trends at different spatial scales. Consequently, the issue of scale has become a
common challenge in geography-oriented research (Guagliardo, 2004). As a form of socio-economic
indicator, CO, emissions also demonstrate spatial heterogeneity and multi-scale patterns, exhibiting a
hierarchical structure with non-linear processes across spatial scales. However, most prior research has
been conducted at either a single city or single spatial scale, often within different geographical and
political contexts (Cai, 2014; Wang et al., 2018). Studies investigating and comparing the spatiotemporal
variance of CO, emissions and their drivers across different levels remain scarce, primarily due to the
lack of precise local-scale carbon emissions data (Shi et al., 2018).

Further analysis is necessary to examine the regional variations and evolutionary pathways of China’s
CO, emissions. In most studies on China, total carbon emissions are used to indicate the extent of
emissions. However, regional differences within China should be analysed through the lens of carbon
emissions intensity. Additionally, existing studies often focus on national or regional contexts, which
reveal trends in carbon emissions at the national level but fail to capture disparities among Chinese
provinces. Given the pronounced regional inequality in a country like China, exploring provincial-level
differences in carbon emissions is of practical significance. Moreover, the evolutionary pathways of
province-level carbon emissions should be examined from a spatiotemporal perspective to accurately
assess the emissions intensity of each province.

To address this, the present study utilises spatial autocorrelation to reflect regional disparities by
examining changes in the spatial patterns of carbon emissions. Additionally, the factors influencing
carbon emissions in each province are analysed using geographically weighted regression (GWR). This
study aims to determine whether carbon emissions in China are sensitive to spatial scale and whether
the multi-faceted mechanisms driving CO, emissions exhibit a hierarchical spatiotemporal structure
influenced by socio-economic development patterns.

2. Data and Methodology

2.1 Estimation of Carbon Emission

This paper focuses on estimating carbon emissions from non-renewable fossil fuels and their primary
derivatives. Using data from the China Energy Statistics Yearbook, eight types of energy — coke, coal,
crude oil, gasoline, kerosene, natural gas, fuel oil, and diesel — were selected for carbon emissions
calculations.
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Table 1. Various Fuels’ Emission Coefficient Estimates

Types NCVi [k) /kg or kJ/m?3] CCi[kg/GJ] COFi
Coal 20934 26.37 0.90
Coke 28470 29.5 0.90
Crude oil 41868 20.1 0.98
Gasoline 43124 18.90 0.98
Kerosene 43124 19.60 0.98
Diesel 42705 20.20 0.98
Fuel oil 41868 21.1 0.98
Natural gas 38931 15.32 0.99

Notes: The net calorific value (NCVi) is sourced from the General Principles of Comprehensive Energy Consumption
Calculation (GB/T 2589-2020). The carbon content (CCi) references the Guidelines for Compiling Provincial Green-
house Gas Inventories. Meanwhile, the carbon oxidation factors (COFi) are derived from the Greenhouse Gas Inven-
tory Guide Study.

Source: own calculations.

In accordance with the 2006 IPCC National Greenhouse Gas Inventory Guidelines, a formula for
estimating carbon emissions has been developed. The specific mathematical expression for calculating
carbon emissions from energy consumption is provided in Eq. (1):

E, =) AC,xNCV,xCC xCOF,x44/12
d (1M

In this expression, E represents the carbon emissions generated by energy consumption in each
province, measured in kilograms. Here, ! denotes the energy type; i ijs the amount of fuel !
consumed, measured in cubic meters or kilograms. i represents the net calorific value of fuel L

expressed in ki/kg or ki/m? COE refers to the carbon oxidation factor for fuel i, and 44/12 is the
conversion factor used to convert carbon into CO,. These data are obtained from national statistical
yearbooks and the General Rules for Calculation of Comprehensive Energy Consumption compiled by
China.

Table 1 presents the estimated emission coefficients for various fuels.
2.2 Spatial Correlation Analysis

Spatial autocorrelation, which is frequently used to examine regional spatial distribution differences and
associations of elements, is divided into global and local spatial autocorrelation. Global spatial
autocorrelation captures the overall characteristics of spatial dependency across the entire area and is
typically measured using the Global Moran’s | index. In contrast, local spatial autocorrelation focuses on
spatial variations relative to a specific unit and its surroundings, with the Local Moran’s | index serving as
the common metric.

2.2.1 Global Spatial Autocorrelation

The global spatial autocorrelation method quantitatively analyses the correlation and differences
between elements in regional space by the Global Moran’s | index. The specific formula is as follows:
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In this expression, ~'and / represent the carbon emissions from energy consumption in provinces l

and ], respectively. X denotes the mean carbon emissions across the 30 provinces under study. The

.
total number of provinces is represented by n, while ¥ signifies the elements of the spatial weight

matrix, and S represents the standard deviation. Moran’s | values range from -1 to 1. A positive Moran’s |
(I>0) indicates a positive spatial correlation, suggesting stronger spatial dependence and smaller overall
spatial variance. Conversely, a negative Moran’s | (I<0) implies a negative spatial correlation, indicating
greater spatial disparities. A value of zero (1=0) suggests randomness or no spatial correlation.

2.2.2 Local Spatial Autocorrelation

The local spatial autocorrelation is used to measure the degree of differences in research elements
between local regions. The formula for calculating the Local Moran’s | index is:

=B T wylx %) (4)

In this expression, a positive "7 suggests a minimal spatial disparity between province ! and its

neighbouring province J . Conversely, a negative "/ indicates a pronounced spatial difference between
the two provinces. By utilising the Local Moran’s | index, Z-score, and LISA values, spatial patterns can be
categorised into four distinct types. The Low-High (LH) type is characterised by a positive local Moran’s |
index, a negative Z-score, and a negative LISA value, representing high values surrounded by lower ones.
The High-High (HH) type features positive values for the Local Moran’s | index, Z-score, and LISA,
indicating clusters of high values. The Low-Low (LL) type, with negative values for the Local Moran’s |
index and Z-score but a positive LISA value, signifies clusters of low values. Lastly, the High-Low (HL) type
displays negative values for the Local Moran’s | index, Z-score, and LISA, denoting low values surrounded
by higher ones.

2.3 Geographically Weighted Regression (GWR) Model

The GWR model enhances the conventional linear regression model by incorporating the spatial location
of data points into the regression equation. This allows the data from neighbouring provinces to be used
for local estimation. The corresponding expression is:

yi=Bo(uirvi)+ Zi Bk(ui,vi)xik *E; i=1,2,...,n (5)

In this model, Ji represents the carbon emissions from energy consumption in each province. ik

denotes the k -th influencing factor of carbon emissions and energy consumption in the province ! The

tuple ( ’,V’)specifies the spatial coordinates of the !-th province. 'BO is the constant of the linear
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u. v
regression at the specific location( ’,v’ ), while ’Bk represents the spatially varying regression

coefficient for the k-th influencing factor in the province i. gidenotes the random error component.
The regression coefficients of the explanatory variables in the GWR model vary with spatial location.
Applying this model to analyse the regional variations in factors influencing energy consumption and
carbon emissions across Chinese provinces allows for a more detailed examination of spatial
characteristics and a more accurate investigation of the data’s spatial non-stationarity.

2.4 Data Source

This study utilises spatial vector data obtained from the GIS database of the Resource and Environmental
Science and Data Centre at the Chinese Academy of Sciences. Province- and region-specific data were
primarily sourced from the China Statistical Yearbook (2006-2019), the China Energy Statistical Yearbook
(2005), and various provincial statistical yearbooks (National Bureau of Statistics, Department of Energy
Statistics, and China Energy Statistical Yearbook, 2016). Calculations of total carbon emissions in each
province are based on energy usage data reported in the China Energy Statistical Yearbook, following the
methods outlined in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

Due to limited data availability in Macao, Taiwan, Hong Kong, and Tibet, the empirical analysis of spatial
carbon emissions measurement is confined to the remaining 30 provinces, autonomous regions, and
municipalities. The emission factors and heat conversion coefficients for various fossil fuels used in this
analysis are sourced from the General Principles for the Calculation of Comprehensive Energy
Consumption, the Guidelines for the Preparation of Provincial Greenhouse Gas Inventories, and the 2007
Research on Greenhouse Gas Inventories.

3. Spatial Correlation Analysis

3.1 Global Spatial Autocorrelation

Using ArcGIS 10.5, the Global Moran’s | index for China’s carbon emissions was calculated based on
data from 2005 to 2018. The results are presented in Table 2.

Table 2. Global Moran’s | of Energy Carbon Emissions in China, 2005-2018

Years Moran’s | z p

2005 0.353 3.404 0.001
2006 0.353 3.395 0.001
2007 0.351 3.400 0.001
2008 0.366 3.546 0.000
2009 0.356 3.463 0.001
2010 0.350 3.413 0.001
2011 0.358 3.452 0.001
2012 0.344 3.349 0.001
2013 0.340 3.466 0.001
2014 0.329 3.390 0.001
2015 0.334 3.475 0.001
2016 0.317 3.336 0.001
2017 0.303 3.202 0.001
2018 0.310 3.240 0.001

Source: own calculations.

The Global Moran’s | values for energy consumption-related carbon emissions across 30 Chinese
provinces (2005-2018) were positive, with a significance level of 1% (Table 2). This indicates that the
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carbon emissions of each province were not spatially independent but exhibited significant spatial
dependence. In other words, provinces with high energy-related carbon emissions were relatively close
to other provinces with similarly high emissions. Likewise, regions with low energy carbon emissions
were also clustered together, displaying a clear high-high and low-low clustering pattern.

Over time, Moran’s | values show a downward trend from 2005 to 2018, suggesting that the spatial
dependence of energy consumption and carbon emissions in China has been weakening. As spatial
spillover effects significantly impact CO, emissions in each province, neighbouring provinces tend to
have similar carbon emissions.

Four key time nodes, 2006, 2010, 2014 and 2018, are selected to describe the energy consumption’s CO,
discharges in China. The distribution of CO, discharges in China was drawn by ArcGIS10.5, as shown in
Figure 1.

Curbun envisiinn
(31Utiow tous)

[
=

(©) 2014 (d)2018

Source: created by the authors.

Figure 1. Distribution of Carbon Emissions in China

In China, CO, emissions vary significantly across regions. Carbon emissions in the eastern zone are
greater compared to those in the western zone, and emissions in the northern zone are higher than in the
southern zone, particularly in the Bohai Bay Economic Circle in the northeast.

Figure 1 clearly illustrates the substantial regional disparities in China’s carbon emissions. Specifically,
the eastern regions exhibit higher emissions than the western regions, and the northern regions exceed
the southern regions in terms of emissions, with particularly elevated levels in the Bohai Bay Economic
Circle in the northeast.

3.2 Local Spatial Autocorrelation

The Local Spatial Autocorrelation conducts a detailed analysis of regional variations in spatial
autocorrelation by examining the local spatial autocorrelation of energy consumption and carbon
emissions across 30 Chinese provinces. Key years — 2006, 2010, 2014 and 2018 - were selected for
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analysis from 2005 to 2018. The Moran’s | scatter plot, showing the spatial distribution of carbon
emissions from energy consumption, was generated using ArcGIS 10.5, as shown in Figure 2. The carbon
emissions in China exhibit significant local spatial agglomeration characteristics.

In the four key years of 2006, 2010, 2014 and 2018, eight provinces displayed significant spatial
autocorrelation. In 2006, the HH regions were primarily Hebei, Shanxi, Shandong, Henan, and
Heilongjiang, with Sichuan as an LL region and Anhui as an LH region. In 2010, the HH regions remained
Hebei, Shanxi, Shandong, Henan, and Heilongjiang, while Xinjiang and Sichuan were LL regions, and
Anhui was an LH region. By 2014, the HH regions still included Hebei, Shanxi, Shandong, Henan, and
Heilongjiang, with Guizhou and Sichuan classified as LL regions and Xinjiang as an HL region. In 2018, the
HH regions continued to consist of Hebei, Shanxi, Shandong, Henan, and Heilongjiang, with Sichuan and
Guizhou as LL regions and Xinjiang as an HL region.

i

(a) 200

(c) 2014 (d) 2018
Source: created by the authors.

Figure 2. The Moran’s | Scatter Point Spatial Distribution of Carbon Discharges

The HH regions, characterised by high carbon emissions, primarily encompass areas such as the Bohai
Bay Economic Circle, the North China Plain, and Heilongjiang, excluding Beijing and Tianjin. These areas
feature advanced economic development, established industries, or abundant natural resources.
Coupled with rapid urbanisation and industrialisation, this leads to significant fossil fuel consumption
and a sharp rise in carbon emissions. Moreover, regions like Shanxi and Henan, which serve as
considerable energy hubs in China, exhibit high carbon emissions due to their reliance on energy-
intensive economic growth.

The LL category is predominantly found in the southwest. Despite the Western Development Strategy
promoting economic growth and increased carbon emissions, these regions still lag behind their eastern
counterparts. Over these four years, Xinjiang transitioned from a low-significance LL region to an HL type.
Located in northwest China, Xinjiang’s initially low economic levels have experienced substantial growth
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driven by national development strategies, leading to increased energy consumption and, consequently,
higher carbon emissions compared to other western provinces.

Anhui has also experienced shifts in its emission levels over the years, typically characterised by high
carbon emissions due to its location in the central inland region. Rapid industrialisation and urbanisation
have driven increased energy consumption and carbon emissions in the province. Notably, in 2014, the
secondary industry dominated Anhui’s economy. By 2018, the share of the secondary industry had
aligned with that of the tertiary sector, which generally produces lower carbon emissions, contributing to
the observed changes.

Research and analysis indicate that spatial heterogeneity characterises carbon emissions across
different Chinese provinces, with spatial factors significantly influencing overall emissions.

Table 3. Estimation Results of GWR Model

Index 2006 2010 2014 2018
R2 0.715 0.763 0.759 0.627
Adjusted R2 0.594 0.653 0.641 0.484
AlCc 665.278 673.372 682.526 701.942

Source: own calculations.
4.2.2 Factor Analysis
1. Population

Analysis of the regression coefficients reveals that the population variable exhibits positive coefficients in
most provinces for 2006, 2010, 2014 and 2018, although some provinces show negative coefficients.
High levels of urbanisation in the central and eastern zones typically lead to a significant increase in
carbon emissions as the population grows. In contrast, the western provinces, characterised by lower
technological advancement, less industrialisation and lower energy efficiency, tend to consume more
energy, thus generating higher carbon emissions. Additionally, the substantial economic scale of certain
provinces involves numerous workers in economic activities, which further increases energy
consumption. Notably, Xinjiang and Qinghai exhibit the most pronounced suppressive impact of
population growth on carbon emissions.

2. Energy structure

Across all provinces in China, the energy structure has contributed to the rise in CO2 emissions. Spatially,
the impact of energy structure on carbon emissions generally diminishes from west to east (2006 to
2018). Temporally, the influence of energy structure on carbon emissions has been progressively
increasing. This trend is primarily driven by rapid urbanisation, which has led to significant increases in
overall energy and coal consumption, thereby escalating carbon emissions.

3. Gross regional product

Economic activity has been a major driver of increased carbon emissions across all Chinese provinces.
During periods of rapid economic growth and substantial investment, carbon emissions tend to rise.
However, as economic development reaches higher levels, greater emphasis is placed on environmental
issues, leading to enhanced awareness and continuous technological improvements, which can
eventually reduce CO; emissions. The positive regression coefficients of GDP in this study over the past
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four years suggest that the relationship between economic growth and CO, emissions in all provinces is
still intensifying. Historically, economic growth has led to an increase in carbon emissions.

4. Influencing Factors and Results

4.1 Selected Factors

There are significant differences in economic level, energy structure, and technological development
among Chinese provinces, which result in varying impacts on carbon emissions across different regions.
CO, emissions are influenced by a variety of factors, including energy consumption intensity,
urbanisation level, population, energy structure, economic development, and energy efficiency (Wang et
al., 2015; Jing, 2015; Su et al., 2018; Qing et al., 2023). In this study, three independent variables were
selected: the gross regional product, year-end population, and energy structure of 30 provinces in China
in 2006, 2010, 2014 and 2018. These variables are used to construct the GWR model to investigate the
spatial heterogeneity of factors influencing China’s carbon emissions. Collinearity among the selected
factors was examined using SPSS 22.0, and the results indicate no multicollinearity between the
variables, confirming the suitability of the GWR model.

4.2 Estimation Results and Factors Analysis
4.2.1 GWR Estimation

Using data from 2006, 2010, 2014 and 2018 for 30 Chinese provinces, this study employs ArcGIS 10.5 to
analyse the spatial variability of factors influencing energy consumption and carbon emissions in each
province. The regression estimates are presented in Table 3, demonstrating a satisfactory model fit.

5. Discussion

The carbon emissions of each province were not spatially independent, meaning that Chinese provinces
with high CO, emissions were generally located near other provinces with similarly high emissions, and
vice versa. Furthermore, the spatial dependence of energy consumption and CO, emissions in China
exhibited a downward trend from 2005 to 2018. Neighbouring provinces displayed similar carbon
emission levels, as spatial spillover effects significantly influenced CO, emissions in each province.
Similarly, CO, emissions in the western zone were lower than those in the eastern zone. In comparison,
emissions in the northern zone were higher compared to the southern zone, particularly in the northeast,
including the Bohai Bay Economic Circle.

In China, CO, emissions exhibit significant local spatial agglomeration characteristics. Spatial
heterogeneity defines CO, emissions across different provinces, with spatial factors influencing overall
emissions. The HH region, characterised by high CO, emissions, predominantly includes areas such as
the North China Plain, the Bohai Bay Economic Circle, and Heilongjiang, excluding Tianjin and Beijing.
These areas have established industries and advanced economic development, which, combined with
rapid industrialisation and urbanisation, have led to substantial fossil fuel consumption and sharply
rising CO, emissions. Additionally, regions like Henan and Shanxi, key energy hubs in China, show high
CO, emissions due to their heavy reliance on energy-intensive economic growth.

The LL category is primarily located in the southwest. Despite the Western Development Strategy
promoting economic growth and increased CO, emissions, these areas still lag behind the eastern
regions. Over the years, Xinjiang has transitioned from a low-significance LL category to an HL category.
Initially characterised by low economic levels, Xinjiang has seen noticeable growth, leading to higher
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energy consumption and CO2 emissions than other western provinces. Similarly, Anhui (an LH region)
has experienced shifts in its emission levels, typically marked by high CO, emissions due to its location in
the central inland zone. Rapid urbanisation has further increased energy consumption and CO,
emissions in Anhui.

There are notable differences in GDP, population growth, and energy structure across Chinese provinces,
resulting in diverse impacts on carbon emissions. From the perspective of influencing factors, the
population shows positive coefficients in most provinces for 2018, 2014, 2010 and 2006, though some
provinces display negative coefficients. High levels of urbanisation in the eastern and central zones
generally lead to significant increases in carbon emissions as the population grows. In contrast, the
western provinces, with less industrialisation, lower energy efficiency and slower technological
advancement, tend to consume more energy, leading to higher CO, emissions. Furthermore, the energy
structure contributes to the rise in CO, emissions across all Chinese provinces. Spatially, the impact of
energy structure on carbon emissions tends to decrease from west to east. Over time, this effect has
gradually intensified, driven by urbanisation and population growth. Finally, GDP remains a key driver of
increasing CO, emissions across all Chinese provinces, with its influence continuing to escalate
nationwide.

Conclusions

Following the methodology outlined by the IPCC, this study calculates the carbon emissions from energy
consumption in China. It then applies global and local spatial autocorrelation techniques to conduct an
empirical analysis, elucidating the spatio-temporal evolutionary patterns of carbon emissions across the
country. Several key findings emerge: First, the Global Moran’s | indicates a decreasing trend from 2005
to 2018, suggesting a weakening spatial dependency of carbon emissions among provinces. Notably,
regions with high emission values are primarily located in the Bohai Bay Economic Circle and
Heilongjiang, among others. Second, the influence of population, energy structure, and GDP on carbon
emissions exhibits significant temporal variation, with their regression coefficients varying markedly
across different provinces, all contributing to an increase in carbon emissions.

Policy Implications

The study presents several implications for policymakers in developing effective strategies for CO,
mitigation in China. The scale and geographical context of China must be considered to significantly
reduce carbon emissions, which is in line with the multi-scale and heterogeneous nature of emissions.
Policymakers should adopt strategies tailored to local conditions, as the factors influencing carbon
emissions vary across different spatial and temporal levels. At the provincial level, optimising the
economic structure is a core measure for significantly lowering emissions. State authorities must focus
on upgrading traditional industries while extensively supporting the financial and services sectors, which
have lower carbon emissions since many Chinese provinces rely heavily on energy-intensive industries.

Moreover, carbon mitigation strategies should also emphasise technological advancements, such as
carbon sequestration technologies and alternative energy sources. Given that carbon-related technology
in China remains at a relatively low level, the state should prioritise investments in research and
development. Additional efforts should be directed toward expanding renewable energy development
and improving the efficient utilisation of coal technologies. Promoting innovation and the development of
carbon capture and storage technologies through location-specific measures is essential for controlling
carbon emission intensity.
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Furthermore, it is crucial to enhance coordination between developed and underdeveloped regions in
China. This includes focusing on optimising energy structures, supporting sustainable urbanisation, and
managing population size in particular megacities. Local authorities should also establish a robust
intellectual property system to facilitate the diffusion of low-carbon technologies, which would not only
help mitigate carbon emissions but also improve public environmental awareness and encourage
households to adopt low-carbon consumption practices. Finally, stricter environmental regulations
should be enacted to raise the threshold for market entry in heavily polluting industrial sectors.

Study Limitations

There are certain limitations associated with this study. For instance, the spatial autocorrelation
approach used here does not fully capture the frictional effects of explanatory variables influencing
carbon emissions. Future research could focus on a more comprehensive selection of indicators to
thoroughly investigate the mechanisms affecting carbon emissions at finer spatial scales. Additionally,
the analysis in this study is limited to provincial-level geographical units due to data constraints,
highlighting the need for future studies to conduct analysis at the city level or smaller units.

Furthermore, given the significant variations in factors affecting carbon emissions across different
industries, conducting analyses specific to various sectors would be more appropriate, thereby
improving the precision of energy reduction strategies in the industrial sector. Finally, the time span of
this study covers the years 2005 to 2018. Future studies can also be carried out over a broader time
period, including the latest possible years.
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PROVINCIJY REGIONINE NELYGYBE IR SU ENERGIJA SUSIJUSIO ANGLIES DIOKSIDO
ISMETIMO JTAKOS VEIKSNIAI KINIJOJE

Shen Yue, Sun Weichen

Santrauka. Straipsnyje, remiantis astuoniy rasiy energijos suvartojimo 2005-2018 m. duomenimis,
pasitelkus TKKK metodikg apskaiciuotas dél energijos vartojimo 30 Kinijos provincijy iSmetamo
anglies dioksido kiekis. Siekiant istirti erdviniy désningumy pokycius, atlikta erdvinés autokoreliacijos
analizé, o geografiSkai srovinés regresijos modelis pritaikytas vertinant anglies dioksido iSmetimo
kiekvienoje provincijoje veiksnius. Atlikus analize suformuluotos trys pagrindinés iSvados. Pirma,
nustatyta didelé anglies dioksido iSmetimo provincijose erdviné priklausomybé. Provincijos, kuriose
iSmetama daug anglies dioksido, yra geografiSkai sujungtos su kitomis provincijomis, kuriose
iSmetamas panasSus kiekis, todél susidaro skirtingi didelio ir mazo kiekio aglomeracijos modeliai.
Taciau ilgainiui 8i erdviné priklausomybé silpnéja. Antra, iSmetamo anglies dioksido kiekis pasizymi
dideliu vietiniu erdviniu susitelkimu, o kiekvienai provincijai budingas unikalus erdvés
heterogeniSkumas. Galiausiai, ekonominés sglygos, technologiné pazanga ir energetikos struktdros
provincijose labai skiriasi, o tai lemia skirtingg poveikj iSmetamam anglies dioksido kiekiui. Tokie
veiksniai kaip ekonomikos augimas, gyventojy skaiCius ir energetikos struktlra paprastai prisideda
prie anglies dioksido iSmetimo didéjimo.

Reiksminiai fodgiai: iSmetamo anglies dioksido kiekis; provincijos lygmuo; erdvinis modelis; jtaka
darantys veiksniai.
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